> 文章列表 > 进程,线程,调度和调度算法基本知识

进程,线程,调度和调度算法基本知识

进程,线程,调度和调度算法基本知识

进程

我们编写的代码只是一个存储在硬盘的静态文件,通过编译后就会生成二进制可执行文件,当我们运行这个可执行文件后,它会被装载到内存中,接着 CPU 会执行程序中的每一条指令,那么这个运行中的程序,就被称为「进程」

并发和并行有什么区别?

进程的状态 

在一个进程的活动期间至少具备三种基本状态,即运行状态、就绪状态、阻塞状态。

描述进程没有占用实际的物理内存空间的情况,这个状态就是挂起状态。这跟阻塞状态是不一样,阻塞状态是等待某个事件的返回。

另外,挂起状态可以分为两种:

  • 阻塞挂起状态:进程在外存(硬盘)并等待某个事件的出现;
  • 就绪挂起状态:进程在外存(硬盘),但只要进入内存,即刻立刻运行;

 

进程的上下文切换

进程的上下文切换不仅包含了虚拟内存、栈、全局变量等用户空间的资源,还包括了内核堆栈、寄存器等内核空间的资源。

通常,会把交换的信息保存在进程的 PCB,当要运行另外一个进程的时候,我们需要从这个进程的 PCB 取出上下文,然后恢复到 CPU 中,这使得这个进程可以继续执行

 

 

线程

在早期的操作系统中都是以进程作为独立运行的基本单位,直到后面,计算机科学家们又提出了更小的能独立运行的基本单位,也就是线程,线程之间可以并发运行且共享相同的地址空间

线程是进程当中的一条执行流程。

同一个进程内多个线程之间可以共享代码段、数据段、打开的文件等资源,但每个线程各自都有一套独立的寄存器和栈,这样可以确保线程的控制流是相对独立的

线程的优点:

  • 一个进程中可以同时存在多个线程;
  • 各个线程之间可以并发执行;
  • 各个线程之间可以共享地址空间和文件等资源;

线程的缺点:

  • 当进程中的一个线程崩溃时,会导致其所属进程的所有线程崩溃

线程与进程的比较

线程与进程的比较如下:

  • 进程是资源(包括内存、打开的文件等)分配的单位,线程是 CPU 调度的单位;
  • 进程拥有一个完整的资源平台,而线程只独享必不可少的资源,如寄存器和栈;
  • 线程同样具有就绪、阻塞、执行三种基本状态,同样具有状态之间的转换关系;
  • 线程能减少并发执行的时间和空间开销;

对于,线程相比进程能减少开销,体现在:

  • 线程的创建时间比进程快,因为进程在创建的过程中,还需要资源管理信息,比如内存管理信息、文件管理信息,而线程在创建的过程中,不会涉及这些资源管理信息,而是共享它们;
  • 线程的终止时间比进程快,因为线程释放的资源相比进程少很多;
  • 同一个进程内的线程切换比进程切换快,因为线程具有相同的地址空间(虚拟内存共享),这意味着同一个进程的线程都具有同一个页表,那么在切换的时候不需要切换页表。而对于进程之间的切换,切换的时候要把页表给切换掉,而页表的切换过程开销是比较大的;
  • 由于同一进程的各线程间共享内存和文件资源,那么在线程之间数据传递的时候,就不需要经过内核了,这就使得线程之间的数据交互效率更高了;所以,不管是时间效率,还是空间效率线程比进程都要高。

线程与进程最大的区别在于:线程是调度的基本单位,而进程则是资源拥有的基本单位

线程的实现

主要有三种线程的实现方式:

  • 用户线程(User Thread:在用户空间实现的线程,不是由内核管理的线程,是由用户态的线程库来完成线程的管理;
  • 内核线程(Kernel Thread:在内核中实现的线程,是由内核管理的线程;
  • 轻量级进程(LightWeight Process:在内核中来支持用户线程;

用户线程的优点

  • 每个进程都需要有它私有的线程控制块(TCB)列表,用来跟踪记录它各个线程状态信息(PC、栈指针、寄存器),TCB 由用户级线程库函数来维护,可用于不支持线程技术的操作系统;
  • 用户线程的切换也是由线程库函数来完成的,无需用户态与内核态的切换,所以速度特别快;

用户线程的缺点

  • 由于操作系统不参与线程的调度,如果一个线程发起了系统调用而阻塞,那进程所包含的用户线程都不能执行了。
  • 当一个线程开始运行后,除非它主动地交出 CPU 的使用权,否则它所在的进程当中的其他线程无法运行,因为用户态的线程没法打断当前运行中的线程,它没有这个特权,只有操作系统才有,但是用户线程不是由操作系统管理的。
  • 由于时间片分配给进程,故与其他进程比,在多线程执行时,每个线程得到的时间片较少,执行会比较慢;

内核线程的优点

  • 在一个进程当中,如果某个内核线程发起系统调用而被阻塞,并不会影响其他内核线程的运行;
  • 分配给线程,多线程的进程获得更多的 CPU 运行时间;

内核线程的缺点

  • 在支持内核线程的操作系统中,由内核来维护进程和线程的上下文信息,如 PCB 和 TCB;
  • 线程的创建、终止和切换都是通过系统调用的方式来进行,因此对于系统来说,系统开销比较大;

轻量级进程(Light-weight process,LWP)是内核支持的用户线程,一个进程可有一个或多个 LWP,每个 LWP 是跟内核线程一对一映射的,也就是 LWP 都是由一个内核线程支持,而且 LWP 是由内核管理并像普通进程一样被调度

在大多数系统中,LWP与普通进程的区别也在于它只有一个最小的执行上下文和调度程序所需的统计信息。一般来说,一个进程代表程序的一个实例,而 LWP 代表程序的执行线程,因为一个执行线程不像进程那样需要那么多状态信息,所以 LWP 也不带有这样的信息。

在 LWP 之上也是可以使用用户线程的,那么 LWP 与用户线程的对应关系就有三种:

  • 1 : 1,即一个 LWP 对应 一个用户线程;
  • N : 1,即一个 LWP 对应多个用户线程;
  • M : N,即多个 LWP 对应多个用户线程;

1 : 1 模式

一个线程对应到一个 LWP 再对应到一个内核线程,如上图的进程 4,属于此模型。

  • 优点:实现并行,当一个 LWP 阻塞,不会影响其他 LWP;
  • 缺点:每一个用户线程,就产生一个内核线程,创建线程的开销较大。

N : 1 模式

多个用户线程对应一个 LWP 再对应一个内核线程,如上图的进程 2,线程管理是在用户空间完成的,此模式中用户的线程对操作系统不可见。

  • 优点:用户线程要开几个都没问题,且上下文切换发生用户空间,切换的效率较高;
  • 缺点:一个用户线程如果阻塞了,则整个进程都将会阻塞,另外在多核 CPU 中,是没办法充分利用 CPU 的。

M : N 模式

根据前面的两个模型混搭一起,就形成 M:N 模型,该模型提供了两级控制,首先多个用户线程对应到多个 LWP,LWP 再一一对应到内核线程,如上图的进程 3。

  • 优点:综合了前两种优点,大部分的线程上下文发生在用户空间,且多个线程又可以充分利用多核 CPU 的资源。

调度

选择一个进程运行这一功能是在操作系统中完成的,通常称为调度程序

在进程的生命周期中,当进程从一个运行状态到另外一状态变化的时候,其实会触发一次调度。

比如,以下状态的变化都会触发操作系统的调度:

  • 从就绪态 -> 运行态:当进程被创建时,会进入到就绪队列,操作系统会从就绪队列选择一个进程运行;
  • 从运行态 -> 阻塞态:当进程发生 I/O 事件而阻塞时,操作系统必须选择另外一个进程运行;
  • 从运行态 -> 结束态:当进程退出结束后,操作系统得从就绪队列选择另外一个进程运行;

因为,这些状态变化的时候,操作系统需要考虑是否要让新的进程给 CPU 运行,或者是否让当前进程从 CPU 上退出来而换另一个进程运行。

另外,如果硬件时钟提供某个频率的周期性中断,那么可以根据如何处理时钟中断 ,把调度算法分为两类:

  • 非抢占式调度算法挑选一个进程,然后让该进程运行直到被阻塞,或者直到该进程退出,才会调用另外一个进程,也就是说不会理时钟中断这个事情。
  • 抢占式调度算法挑选一个进程,然后让该进程只运行某段时间,如果在该时段结束时,该进程仍然在运行时,则会把它挂起,接着调度程序从就绪队列挑选另外一个进程。这种抢占式调度处理,需要在时间间隔的末端发生时钟中断,以便把 CPU 控制返回给调度程序进行调度,也就是常说的时间片机制

原则一:如果运行的程序,发生了 I/O 事件的请求,那 CPU 使用率必然会很低,因为此时进程在阻塞等待硬盘的数据返回。这样的过程,势必会造成 CPU 突然的空闲。所以,为了提高 CPU 利用率,在这种发送 I/O 事件致使 CPU 空闲的情况下,调度程序需要从就绪队列中选择一个进程来运行。

原则二:有的程序执行某个任务花费的时间会比较长,如果这个程序一直占用着 CPU,会造成系统吞吐量(CPU 在单位时间内完成的进程数量)的降低。所以,要提高系统的吞吐率,调度程序要权衡长任务和短任务进程的运行完成数量。

原则三:从进程开始到结束的过程中,实际上是包含两个时间,分别是进程运行时间和进程等待时间,这两个时间总和就称为周转时间。进程的周转时间越小越好,如果进程的等待时间很长而运行时间很短,那周转时间就很长,这不是我们所期望的,调度程序应该避免这种情况发生。

原则四:处于就绪队列的进程,也不能等太久,当然希望这个等待的时间越短越好,这样可以使得进程更快的在 CPU 中执行。所以,就绪队列中进程的等待时间也是调度程序所需要考虑的原则。

原则五:对于鼠标、键盘这种交互式比较强的应用,我们当然希望它的响应时间越快越好,否则就会影响用户体验了。所以,对于交互式比较强的应用,响应时间也是调度程序需要考虑的原则。

针对上面的五种调度原则,总结成如下:

  • CPU 利用率:调度程序应确保 CPU 是始终匆忙的状态,这可提高 CPU 的利用率;
  • 系统吞吐量:吞吐量表示的是单位时间内 CPU 完成进程的数量,长作业的进程会占用较长的 CPU 资源,因此会降低吞吐量,相反,短作业的进程会提升系统吞吐量;
  • 周转时间:周转时间是进程运行+阻塞时间+等待时间的总和,一个进程的周转时间越小越好;
  • 等待时间:这个等待时间不是阻塞状态的时间,而是进程处于就绪队列的时间,等待的时间越长,用户越不满意;
  • 响应时间:用户提交请求到系统第一次产生响应所花费的时间,在交互式系统中,响应时间是衡量调度算法好坏的主要标准。

说白了,这么多调度原则,目的就是要使得进程要「快」。

调度算法

多级反馈队列调度算法

多级反馈队列(Multilevel Feedback Queue)调度算法是「时间片轮转算法」和「最高优先级算法」的综合和发展。

顾名思义:

  • 「多级」表示有多个队列,每个队列优先级从高到低,同时优先级越高时间片越短。
  • 「反馈」表示如果有新的进程加入优先级高的队列时,立刻停止当前正在运行的进程,转而去运行优先级高的队列;

来看看,它是如何工作的:

  • 设置了多个队列,赋予每个队列不同的优先级,每个队列优先级从高到低,同时优先级越高时间片越短
  • 新的进程会被放入到第一级队列的末尾,按先来先服务的原则排队等待被调度,如果在第一级队列规定的时间片没运行完成,则将其转入到第二级队列的末尾,以此类推,直至完成;
  • 当较高优先级的队列为空,才调度较低优先级的队列中的进程运行。如果进程运行时,有新进程进入较高优先级的队列,则停止当前运行的进程并将其移入到原队列末尾,接着让较高优先级的进程运行;

可以发现,对于短作业可能可以在第一级队列很快被处理完。对于长作业,如果在第一级队列处理不完,可以移入下次队列等待被执行,虽然等待的时间变长了,但是运行时间也变更长了,所以该算法很好的兼顾了长短作业,同时有较好的响应时间。

 

北欧旅游攻略