> 文章列表 > LinkedHashMap如何实现LRU缓存淘汰策略?

LinkedHashMap如何实现LRU缓存淘汰策略?

LinkedHashMap如何实现LRU缓存淘汰策略?

本文目录

    • 1.LRU是什么?
    • 2.如何使用LinkedHashMap实现LRU?
    • 3.LinkedHashMap源码分析
      • 3.1 LinkedHashMap简介
      • 3.2 继承体系
      • 3.3 内部数据存储结构
      • 3.4源码解析
        • 属性:
        • 构造方法
        • afterNodeInsertion(boolean evict)方法
        • afterNodeAccess(Node e)方法
        • afterNodeRemoval(Node e)方法
        • get(Object key)方法
        • 源码总结

1.LRU是什么?

LRU,Least Recently Used,最近最少使用,也就是优先淘汰最近最少使用的元素

2.如何使用LinkedHashMap实现LRU?

简而言之,就是将LinedHashMap的accessOrder设为true即可。
demo实现如下:

package com.hikvision.dai.didi;import java.util.LinkedHashMap;
import java.util.Map;/*** @Classname LRU* @Description LRU* @Date 2023/4/22 21:16* @Created by Chamption-Dai*/
public class LRU<K, V> extends LinkedHashMap<K, V> {/*** 保存缓存的容量*/private Integer cache;/*** 构造函数** @param cache      缓存容量* @param loadFactor 负载因子*/public LRU(int cache, float loadFactor) {//linkedHashMap中的accessOrder设为truesuper(cache, loadFactor, true);this.cache = cache;}/*** 重写removeEldestEntry()方法设置何时移除旧元素** @param eldest 最好使用的元素* @return boolean*/@Overrideprotected boolean removeEldestEntry(Map.Entry<K, V> eldest) {//当元素容量大鱼设置的缓存容量,就开始移除最少使用的元素return size() > this.cache;}public Integer getInitialCap() {return cache;}public void setInitialCap(Integer cache) {this.cache = cache;}
}

测试一下:

package com.hikvision.dai.didi;/*** @Classname LRUTest* @Description LRUTest* @Date 2023/4/22 21:00* @Created by Chamption-dai*/
public class LRUTest {public static void main(String[] args) {//设置缓存大小为5,负载因子为0.75fLRU<String, Integer> lru = new LRU<>(5, 0.75f);//添加元素:lru.put("1", 1);lru.put("2", 2);lru.put("3", 3);lru.put("4", 4);lru.put("5", 5);System.out.println(lru); //输出:{1=1, 2=2, 3=3, 4=4, 5=5}lru.put("100", 100);System.out.println(lru); //输出:{2=2, 3=3, 4=4, 5=5, 100=100} ,现象:最开始添加的“最老“的”1=1被移除了//使用entry:("3",3)lru.get("3");//调用get()或者put(),LinkedHashMap中的双向链表会把对应的元素放在链表的末尾,3=3目前是最年轻的System.out.println(lru); //输出:{2=2, 4=4, 5=5, 100=100, 3=3}。lru.put("200", 200);System.out.println(lru); //{4=4, 5=5, 100=100, 3=3, 200=200},现象,最老的“2=2”被移除了}
}

3.LinkedHashMap源码分析

3.1 LinkedHashMap简介

LinkedHashMap内部维护了一个双向链表,能保证元素按插入的顺序访问,也能以访问顺序访问,可以用来实现LRU缓存策略。

LinkedHashMap可以看成是 LinkedList + HashMap。

3.2 继承体系

LinkedHashMap如何实现LRU缓存淘汰策略?

3.3 内部数据存储结构

在这里插入图片描述
HashMap是(数组 + 单链表 + 红黑树)的存储结构,那LinkedHashMap是怎么存储的呢?

通过上面的继承体系,我们知道它继承了HashMap,所以它的内部也有这三种结构,但是它还额外添加了一种“双向链表”的结构存储所有元素的顺序。

添加删除元素的时候需要同时维护在HashMap中的存储,也要维护在LinkedList中的存储,所以性能上来说会比HashMap稍慢。

3.4源码解析

属性:

    /*** The head (eldest) of the doubly linked list.(双向链表头节点)*/transient LinkedHashMap.Entry<K,V> head;/*** The tail (youngest) of the doubly linked list.(双向链表尾节点)*/transient LinkedHashMap.Entry<K,V> tail;/*** The iteration ordering method for this linked hash map: <tt>true</tt>* for access-order, <tt>false</tt> for insertion-order.*  是否按访问顺序排序*/final boolean accessOrder;

构造方法:

    public LinkedHashMap() {super();accessOrder = false;}public LinkedHashMap(int initialCapacity) {super(initialCapacity);accessOrder = false;}public LinkedHashMap(int initialCapacity, float loadFactor) {super(initialCapacity, loadFactor);accessOrder = false;}public LinkedHashMap(Map<? extends K, ? extends V> m) {super();accessOrder = false;putMapEntries(m, false);}public LinkedHashMap(int initialCapacity,float loadFactor,boolean accessOrder) {super(initialCapacity, loadFactor);this.accessOrder = accessOrder;}

前四个构造方法accessOrder都等于false,说明双向链表是按插入顺序存储元素。

最后一个构造方法accessOrder从构造方法参数传入,如果传入true,则就实现了按访问顺序存储元素,这也是实现LRU缓存策略的关键。

afterNodeInsertion(boolean evict)方法

在节点插入之后做些什么,在HashMap中的putVal()方法中被调用,可以看到HashMap中这个方法的实现为空。

    void afterNodeInsertion(boolean evict) { // possibly remove eldestLinkedHashMap.Entry<K,V> first;if (evict && (first = head) != null && removeEldestEntry(first)) {K key = first.key;removeNode(hash(key), key, null, false, true);}}//上述实现LRU重写了该方法,重写removeEldestEntry()可以实现不同的缓存机制protected boolean removeEldestEntry(Map.Entry<K,V> eldest) {return false;}

evict,英:/ɪˈvɪkt/ 美:/ɪˈvɪkt/ 驱逐、逐出的意思。

(1)如果evict为true,且头节点不为空,且确定移除最老的元素,那么就调用HashMap.removeNode()把头节点移除(这里的头节点是双向链表的头节点,而不是某个桶中的第一个元素);

(2)HashMap.removeNode()从HashMap中把这个节点移除之后,会调用afterNodeRemoval()方法;

(3)默认removeEldestEntry()方法返回false,也就是不删除元素。

afterNodeAccess(Node e)方法

在节点访问之后被调用,主要在put()已经存在的元素或get()时被调用,如果accessOrder为true,调用这个方法把访问到的节点移动到双向链表的末尾。

    void afterNodeAccess(Node<K,V> e) { // move node to lastLinkedHashMap.Entry<K,V> last;// 如果accessOrder为true,并且访问的节点不是尾节点if (accessOrder && (last = tail) != e) {LinkedHashMap.Entry<K,V> p =(LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after;// 把p节点从双向链表中移除p.after = null;if (b == null)head = a;elseb.after = a;if (a != null)a.before = b;elselast = b;// 把p节点放到双向链表的末尾if (last == null)head = p;else {p.before = last;last.after = p;}// 尾节点等于ptail = p;++modCount;}}

(1)如果accessOrder为true,并且访问的节点不是尾节点;

(2)从双向链表中移除访问的节点;

(3)把访问的节点加到双向链表的末尾;(末尾为最新访问的元素)

afterNodeRemoval(Node e)方法

在节点被删除之后调用的方法。

 void afterNodeRemoval(Node<K,V> e) { // unlinkLinkedHashMap.Entry<K,V> p =(LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after;p.before = p.after = null;if (b == null)head = a;elseb.after = a;if (a == null)tail = b;elsea.before = b;}

直接将节点从双向链表中移除。

get(Object key)方法

获取元素

   public V get(Object key) {Node<K,V> e;if ((e = getNode(hash(key), key)) == null)return null;if (accessOrder)afterNodeAccess(e);return e.value;}

如果查找到了元素,且accessOrder为true,则调用afterNodeAccess()方法把访问的节点移到双向链表的末尾。

源码总结

(1)LinkedHashMap继承自HashMap,具有HashMap的所有特性;

(2)LinkedHashMap内部维护了一个双向链表存储所有的元素;

(3)如果accessOrder为false,则可以按插入元素的顺序遍历元素;

(4)如果accessOrder为true,则可以按访问元素的顺序遍历元素;

(5)LinkedHashMap的实现非常精妙,很多方法都是在HashMap中留的钩子(Hook),直接实现这些Hook就可以实现对应的功能了,并不需要再重写put()等方法;

(6)默认的LinkedHashMap并不会移除旧元素,如果需要移除旧元素,则需要重写removeEldestEntry()方法设定移除策略;

(7)LinkedHashMap可以用来实现LRU缓存淘汰策略;