> 文章列表 > 并发编程 - AQS 源码

并发编程 - AQS 源码

并发编程 - AQS 源码

1. AQS 源码

public abstract class AbstractQueuedSynchronizer extends AbstractOwnableSynchronizer implements java.io.Serializable {private static final long serialVersionUID = 7373984972572414691L;/* Creates a new {@code AbstractQueuedSynchronizer} instance* with initial synchronization state of zero.*/protected AbstractQueuedSynchronizer() {}/* Wait queue node class.* <p>* 不管是条件队列,还是CLH等待队列* 都是基于Node类* <p>* AQS当中的同步等待队列也称CLH队列,CLH队列是Craig、Landin、Hagersten三人* 发明的一种基于双向链表数据结构的队列,是FIFO先入先出线程等待队列,Java中的* CLH队列是原CLH队列的一个变种,线程由原自旋机制改为阻塞机制。*/static final class Node {/* 标记节点未共享模式*/static final Node SHARED = new Node();/* 标记节点为独占模式*/static final Node EXCLUSIVE = null;/* 在同步队列中等待的线程等待超时或者被中断,需要从同步队列中取消等待*/static final int CANCELLED = 1;/* 后继节点的线程处于等待状态,而当前的节点如果释放了同步状态或者被取消,* 将会通知后继节点,使后继节点的线程得以运行。*/static final int SIGNAL = -1;/* 节点在等待队列中,节点的线程等待在Condition上,当其他线程对Condition调用了signal()方法后,* 该节点会从等待队列中转移到同步队列中,加入到同步状态的获取中*/static final int CONDITION = -2;/* 表示下一次共享式同步状态获取将会被无条件地传播下去*/static final int PROPAGATE = -3;/* 标记当前节点的信号量状态 (1,0,-1,-2,-3)5种状态* 使用CAS更改状态,volatile保证线程可见性,高并发场景下,* 即被一个线程修改后,状态会立马让其他线程可见。*/volatile int waitStatus;/* 前驱节点,当前节点加入到同步队列中被设置*/volatile Node prev;/* 后继节点*/volatile Node next;/* 节点同步状态的线程*/volatile Thread thread;/* 等待队列中的后继节点,如果当前节点是共享的,那么这个字段是一个SHARED常量,* 也就是说节点类型(独占和共享)和等待队列中的后继节点共用同一个字段。*/Node nextWaiter;/* Returns true if node is waiting in shared mode.*/final boolean isShared() {return nextWaiter == SHARED;}/* 返回前驱节点*/final Node predecessor() throws NullPointerException {Node p = prev;if (p == null)throw new NullPointerException();elsereturn p;}//空节点,用于标记共享模式Node() {    // Used to establish initial head or SHARED marker}//用于同步队列CLHNode(Thread thread, Node mode) {     // Used by addWaiterthis.nextWaiter = mode;this.thread = thread;}//用于条件队列Node(Thread thread, int waitStatus) { // Used by Conditionthis.waitStatus = waitStatus;this.thread = thread;}}/* 指向同步等待队列的头节点*/private transient volatile Node head;/* 指向同步等待队列的尾节点*/private transient volatile Node tail;/* 同步资源状态*/private volatile int state;protected final int getState() {return state;}protected final void setState(int newState) {state = newState;}protected final boolean compareAndSetState(int expect, int update) {return unsafe.compareAndSwapInt(this, stateOffset, expect, update);}static final long spinForTimeoutThreshold = 1000L;/* 节点加入CLH同步队列*/private Node enq(final Node node) {for (; ; ) {Node t = tail;if (t == null) { // Must initialize//队列为空需要初始化,创建空的头节点if (compareAndSetHead(new Node()))tail = head;} else {node.prev = t;//set尾部节点if (compareAndSetTail(t, node)) {//当前节点置为尾部t.next = node; //前驱节点的next指针指向当前节点return t;}}}}private Node addWaiter(Node mode) {// 1. 将当前线程构建成Node类型Node node = new Node(Thread.currentThread(), mode);// Try the fast path of enq; backup to full enq on failureNode pred = tail;// 2. 1当前尾节点是否为null?if (pred != null) {// 2.2 将当前节点尾插入的方式node.prev = pred;// 2.3 CAS将节点插入同步队列的尾部if (compareAndSetTail(pred, node)) {pred.next = node;return node;}}enq(node);return node;}private void setHead(Node node) {head = node;node.thread = null;node.prev = null;}private void unparkSuccessor(Node node) {//获取wait状态int ws = node.waitStatus;if (ws < 0)compareAndSetWaitStatus(node, ws, 0);// 将等待状态waitStatus设置为初始值0/* 若后继结点为空,或状态为CANCEL(已失效),则从后尾部往前遍历找到最前的一个处于正常阻塞状态的结点* 进行唤醒*/Node s = node.next; //head.next = Node1 ,thread = T3if (s == null || s.waitStatus > 0) {s = null;for (Node t = tail; t != null && t != node; t = t.prev)if (t.waitStatus <= 0)s = t;}if (s != null)LockSupport.unpark(s.thread);//唤醒线程,T3唤醒}/* 把当前结点设置为SIGNAL或者PROPAGATE* 唤醒head.next(B节点),B节点唤醒后可以竞争锁,成功后head->B,然后又会唤醒B.next,一直重复直到共享节点都唤醒* head节点状态为SIGNAL,重置head.waitStatus->0,唤醒head节点线程,唤醒后线程去竞争共享锁* head节点状态为0,将head.waitStatus->Node.PROPAGATE传播状态,表示需要将状态向后继节点传播*/private void doReleaseShared() {for (; ; ) {Node h = head;if (h != null && h != tail) {int ws = h.waitStatus;if (ws == Node.SIGNAL) {//head是SIGNAL状态/* head状态是SIGNAL,重置head节点waitStatus为0,E这里不直接设为Node.PROPAGAT,* 是因为unparkSuccessor(h)中,如果ws < 0会设置为0,所以ws先设置为0,再设置为PROPAGATE* 这里需要控制并发,因为入口有setHeadAndPropagate跟release两个,避免两次unpark*/if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))continue; //设置失败,重新循环/* head状态为SIGNAL,且成功设置为0之后,唤醒head.next节点线程* 此时head、head.next的线程都唤醒了,head.next会去竞争锁,成功后head会指向获取锁的节点,* 也就是head发生了变化。看最底下一行代码可知,head发生变化后会重新循环,继续唤醒head的下一个节点*/unparkSuccessor(h);/ 如果本身头节点的waitStatus是出于重置状态(waitStatus==0)的,将其设置为“传播”状态。* 意味着需要将状态向后一个节点传播*/} else if (ws == 0 && !compareAndSetWaitStatus(h, 0, Node.PROPAGATE))continue;                // loop on failed CAS}if (h == head) //如果head变了,重新循环break;}}/* 把node节点设置成head节点,且Node.waitStatus->Node.PROPAGATE*/private void setHeadAndPropagate(Node node, int propagate) {Node h = head; //h用来保存旧的head节点setHead(node);//head引用指向node节点/* 这里意思有两种情况是需要执行唤醒操作* 1.propagate > 0 表示调用方指明了后继节点需要被唤醒* 2.头节点后面的节点需要被唤醒(waitStatus<0),不论是老的头结点还是新的头结点*/if (propagate > 0 || h == null || h.waitStatus < 0 ||(h = head) == null || h.waitStatus < 0) {Node s = node.next;if (s == null || s.isShared())//node是最后一个节点或者 node的后继节点是共享节点/* 如果head节点状态为SIGNAL,唤醒head节点线程,重置head.waitStatus->0* head节点状态为0(第一次添加时是0),设置head.waitStatus->Node.PROPAGATE表示状态需要向后继节点传播 */doReleaseShared();}}/* 终结掉正在尝试去获取锁的节点 @param node the node*/private void cancelAcquire(Node node) {// Ignore if node doesn't existif (node == null)return;node.thread = null;// 剔除掉一件被cancel掉的节点Node pred = node.prev;while (pred.waitStatus > 0)node.prev = pred = pred.prev;Node predNext = pred.next;node.waitStatus = Node.CANCELLED;if (node == tail && compareAndSetTail(node, pred)) {compareAndSetNext(pred, predNext, null);} else {int ws;if (pred != head && ((ws = pred.waitStatus) == Node.SIGNAL || (ws <= 0 && compareAndSetWaitStatus(pred, ws, Node.SIGNAL))) && pred.thread != null) {Node next = node.next;if (next != null && next.waitStatus <= 0)compareAndSetNext(pred, predNext, next);} else {unparkSuccessor(node);}node.next = node; // help GC}}//private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {int ws = pred.waitStatus;if (ws == Node.SIGNAL)//若前驱结点的状态是SIGNAL,意味着当前结点可以被安全地parkreturn true;if (ws > 0) {//前驱节点状态如果被取消状态,将被移除出队列do {node.prev = pred = pred.prev;} while (pred.waitStatus > 0);pred.next = node;} else {/* 当前驱节点waitStatus为 0 or PROPAGATE状态时* 将其设置为SIGNAL状态,然后当前结点才可以可以被安全地park */compareAndSetWaitStatus(pred, ws, Node.SIGNAL);}return false;}/* 中断当前线程*/static void selfInterrupt() {Thread.currentThread().interrupt();}/* 阻塞当前节点,返回当前Thread的中断状态* LockSupport.park 底层实现逻辑调用系统内核功能 pthread_mutex_lock 阻塞线程*/private final boolean parkAndCheckInterrupt() {LockSupport.park(this);//阻塞return Thread.interrupted();}/* 已经在队列当中的Thread节点,准备阻塞等待获取锁*/final boolean acquireQueued(final Node node, int arg) {boolean failed = true;try {boolean interrupted = false;for (; ; ) {//死循环final Node p = node.predecessor();//找到当前结点的前驱结点if (p == head && tryAcquire(arg)) {//如果前驱结点是头结点,才tryAcquire,其他结点是没有机会tryAcquire的。setHead(node);//获取同步状态成功,将当前结点设置为头结点。p.next = null; // help GCfailed = false;return interrupted;}/* 如果前驱节点不是Head,通过shouldParkAfterFailedAcquire判断是否应该阻塞* 前驱节点信号量为-1,当前线程可以安全被parkAndCheckInterrupt用来阻塞线程*/if (shouldParkAfterFailedAcquire(p, node) && parkAndCheckInterrupt())interrupted = true;}} finally {if (failed)cancelAcquire(node);}}/* 与acquireQueued逻辑相似,唯一区别节点还不在队列当中需要先进行入队操作*/private void doAcquireInterruptibly(int arg) throws InterruptedException {final Node node = addWaiter(Node.EXCLUSIVE);//以独占模式放入队列尾部boolean failed = true;try {for (; ; ) {final Node p = node.predecessor();if (p == head && tryAcquire(arg)) {setHead(node);p.next = null; // help GCfailed = false;return;}if (shouldParkAfterFailedAcquire(p, node) && parkAndCheckInterrupt())throw new InterruptedException();}} finally {if (failed)cancelAcquire(node);}}/* 独占模式定时获取*/private boolean doAcquireNanos(int arg, long nanosTimeout) throws InterruptedException {if (nanosTimeout <= 0L)return false;final long deadline = System.nanoTime() + nanosTimeout;final Node node = addWaiter(Node.EXCLUSIVE);//加入队列boolean failed = true;try {for (; ; ) {final Node p = node.predecessor();if (p == head && tryAcquire(arg)) {setHead(node);p.next = null; // help GCfailed = false;return true;}nanosTimeout = deadline - System.nanoTime();if (nanosTimeout <= 0L)return false;//超时直接返回获取失败if (shouldParkAfterFailedAcquire(p, node) && nanosTimeout > spinForTimeoutThreshold)//阻塞指定时长,超时则线程自动被唤醒LockSupport.parkNanos(this, nanosTimeout);if (Thread.interrupted())//当前线程中断状态throw new InterruptedException();}} finally {if (failed)cancelAcquire(node);}}/* 尝试获取共享锁*/private void doAcquireShared(int arg) {final Node node = addWaiter(Node.SHARED);//入队boolean failed = true;try {boolean interrupted = false;for (; ; ) {final Node p = node.predecessor();//前驱节点if (p == head) {int r = tryAcquireShared(arg); //非公平锁实现,再尝试获取锁//state==0时tryAcquireShared会返回>=0(CountDownLatch中返回的是1)。// state为0说明共享次数已经到了,可以获取锁了if (r >= 0) {//r>0表示state==0,前继节点已经释放锁,锁的状态为可被获取//这一步设置node为head节点设置node.waitStatus->Node.PROPAGATE,然后唤醒node.threadsetHeadAndPropagate(node, r);p.next = null; // help GCif (interrupted)selfInterrupt();failed = false;return;}}//前继节点非head节点,将前继节点状态设置为SIGNAL,通过park挂起node节点的线程if (shouldParkAfterFailedAcquire(p, node) && parkAndCheckInterrupt())interrupted = true;}} finally {if (failed)cancelAcquire(node);}}private void doAcquireSharedInterruptibly(int arg) throws InterruptedException {final Node node = addWaiter(Node.SHARED);boolean failed = true;try {for (; ; ) {final Node p = node.predecessor();if (p == head) {int r = tryAcquireShared(arg);if (r >= 0) {setHeadAndPropagate(node, r);p.next = null; // help GCfailed = false;return;}}if (shouldParkAfterFailedAcquire(p, node) && parkAndCheckInterrupt())throw new InterruptedException();}} finally {if (failed)cancelAcquire(node);}}private boolean doAcquireSharedNanos(int arg, long nanosTimeout) throws InterruptedException {if (nanosTimeout <= 0L)return false;final long deadline = System.nanoTime() + nanosTimeout;final Node node = addWaiter(Node.SHARED);boolean failed = true;try {for (; ; ) {final Node p = node.predecessor();if (p == head) {int r = tryAcquireShared(arg);if (r >= 0) {setHeadAndPropagate(node, r);p.next = null; // help GCfailed = false;return true;}}nanosTimeout = deadline - System.nanoTime();if (nanosTimeout <= 0L)return false;if (shouldParkAfterFailedAcquire(p, node) && nanosTimeout > spinForTimeoutThreshold)LockSupport.parkNanos(this, nanosTimeout);if (Thread.interrupted())throw new InterruptedException();}} finally {if (failed)cancelAcquire(node);}}// Main exported methods/* 尝试获取独占锁,可指定锁的获取数量*/protected boolean tryAcquire(int arg) {throw new UnsupportedOperationException();}/* 尝试释放独占锁,在子类当中实现*/protected boolean tryRelease(int arg) {throw new UnsupportedOperationException();}/* 共享式:共享式地获取同步状态。对于独占式同步组件来讲,同一时刻只有一个线程能获取到同步状态,* 其他线程都得去排队等待,其待重写的尝试获取同步状态的方法tryAcquire返回值为boolean,这很容易理解;* 对于共享式同步组件来讲,同一时刻可以有多个线程同时获取到同步状态,这也是“共享”的意义所在。* 本方法待被之类覆盖实现具体逻辑* 1.当返回值大于0时,表示获取同步状态成功,同时还有剩余同步状态可供其他线程获取;* <p>*  2.当返回值等于0时,表示获取同步状态成功,但没有可用同步状态了;*  3.当返回值小于0时,表示获取同步状态失败。*/protected int tryAcquireShared(int arg) {throw new UnsupportedOperationException();}/* 释放共享锁,具体实现在子类当中实现*/protected boolean tryReleaseShared(int arg) {throw new UnsupportedOperationException();}/* 当前线程是否持有独占锁*/protected boolean isHeldExclusively() {throw new UnsupportedOperationException();}/* 获取独占锁*/public final void acquire(int arg) {//尝试获取锁if (!tryAcquire(arg) && acquireQueued(addWaiter(Node.EXCLUSIVE), arg))//独占模式selfInterrupt();}public final void acquireInterruptibly(int arg)throws InterruptedException {if (Thread.interrupted())throw new InterruptedException();if (!tryAcquire(arg))doAcquireInterruptibly(arg);}/* 获取独占锁,设置最大等待时间*/public final boolean tryAcquireNanos(int arg, long nanosTimeout)throws InterruptedException {if (Thread.interrupted())throw new InterruptedException();return tryAcquire(arg) ||doAcquireNanos(arg, nanosTimeout);}/* 释放独占模式持有的锁*/public final boolean release(int arg) {if (tryRelease(arg)) {//释放一次锁Node h = head;if (h != null && h.waitStatus != 0)unparkSuccessor(h);//唤醒后继结点return true;}return false;}/* 请求获取共享锁*/public final void acquireShared(int arg) {if (tryAcquireShared(arg) < 0)//返回值小于0,获取同步状态失败,排队去;获取同步状态成功,直接返回去干自己的事儿。doAcquireShared(arg);}public final boolean releaseShared(int arg) {if (tryReleaseShared(arg)) {doReleaseShared();return true;}return false;}public final boolean hasQueuedThreads() {return head != tail;}public final boolean hasContended() {return head != null;}public final Thread getFirstQueuedThread() {// handle only fast path, else relayreturn (head == tail) ? null : fullGetFirstQueuedThread();}private Thread fullGetFirstQueuedThread() {Node h, s;Thread st;if (((h = head) != null && (s = h.next) != null && s.prev == head && (st = s.thread) != null) || ((h = head) != null && (s = h.next) != null && s.prev == head && (st = s.thread) != null))return st;Node t = tail;Thread firstThread = null;while (t != null && t != head) {Thread tt = t.thread;if (tt != null)firstThread = tt;t = t.prev;}return firstThread;}/* 判断当前线程是否在队列当中*/public final boolean isQueued(Thread thread) {if (thread == null)throw new NullPointerException();for (Node p = tail; p != null; p = p.prev)if (p.thread == thread)return true;return false;}final boolean apparentlyFirstQueuedIsExclusive() {Node h, s;return (h = head) != null && (s = h.next) != null && !s.isShared() && s.thread != null;}/* 判断当前节点是否有前驱节点*/public final boolean hasQueuedPredecessors() {Node t = tail; // Read fields in reverse initialization orderNode h = head;Node s;return h != t && ((s = h.next) == null || s.thread != Thread.currentThread());}/* 同步队列长度*/public final int getQueueLength() {int n = 0;for (Node p = tail; p != null; p = p.prev) {if (p.thread != null)++n;}return n;}/* 获取队列等待thread集合*/public final Collection<Thread> getQueuedThreads() {ArrayList<Thread> list = new ArrayList<Thread>();for (Node p = tail; p != null; p = p.prev) {Thread t = p.thread;if (t != null)list.add(t);}return list;}/* 获取独占模式等待thread线程集合*/public final Collection<Thread> getExclusiveQueuedThreads() {ArrayList<Thread> list = new ArrayList<Thread>();for (Node p = tail; p != null; p = p.prev) {if (!p.isShared()) {Thread t = p.thread;if (t != null)list.add(t);}}return list;}/* 获取共享模式等待thread集合*/public final Collection<Thread> getSharedQueuedThreads() {ArrayList<Thread> list = new ArrayList<Thread>();for (Node p = tail; p != null; p = p.prev) {if (p.isShared()) {Thread t = p.thread;if (t != null)list.add(t);}}return list;}/* 判断节点是否在同步队列中*/final boolean isOnSyncQueue(Node node) {//快速判断1:节点状态或者节点没有前置节点//注:同步队列是有头节点的,而条件队列没有if (node.waitStatus == Node.CONDITION || node.prev == null)return false;//快速判断2:next字段只有同步队列才会使用,条件队列中使用的是nextWaiter字段if (node.next != null) // If has successor, it must be on queuereturn true;//上面如果无法判断则进入复杂判断return findNodeFromTail(node);}private boolean findNodeFromTail(Node node) {Node t = tail;for (; ; ) {if (t == node)return true;if (t == null)return false;t = t.prev;}}/* 将节点从条件队列当中移动到同步队列当中,等待获取锁*/final boolean transferForSignal(Node node) {/ 修改节点信号量状态为0,失败直接返回false*/if (!compareAndSetWaitStatus(node, Node.CONDITION, 0))return false;/ 加入同步队列尾部当中,返回前驱节点*/Node p = enq(node);int ws = p.waitStatus;//前驱节点不可用 或者 修改信号量状态失败if (ws > 0 || !compareAndSetWaitStatus(p, ws, Node.SIGNAL))LockSupport.unpark(node.thread); //唤醒当前节点return true;}final boolean transferAfterCancelledWait(Node node) {if (compareAndSetWaitStatus(node, Node.CONDITION, 0)) {enq(node);return true;}while (!isOnSyncQueue(node))Thread.yield();return false;}/* 入参就是新创建的节点,即当前节点*/final int fullyRelease(Node node) {boolean failed = true;try {//这里这个取值要注意,获取当前的state并释放,这从另一个角度说明必须是独占锁//可以考虑下这个逻辑放在共享锁下面会发生什么?int savedState = getState();if (release(savedState)) {failed = false;return savedState;} else {//如果这里释放失败,则抛出异常throw new IllegalMonitorStateException();}} finally {/* 如果释放锁失败,则把节点取消,由这里就能看出来上面添加节点的逻辑中* 只需要判断最后一个节点是否被取消就可以了*/if (failed)node.waitStatus = Node.CANCELLED;}}public final boolean hasWaiters(ConditionObject condition) {if (!owns(condition))throw new IllegalArgumentException("Not owner");return condition.hasWaiters();}/* 获取条件队列长度*/public final int getWaitQueueLength(ConditionObject condition) {if (!owns(condition))throw new IllegalArgumentException("Not owner");return condition.getWaitQueueLength();}/* 获取条件队列当中所有等待的thread集合*/public final Collection<Thread> getWaitingThreads(ConditionObject condition) {if (!owns(condition))throw new IllegalArgumentException("Not owner");return condition.getWaitingThreads();}/* 条件对象,实现基于条件的具体行为*/public class ConditionObject implements Condition, java.io.Serializable {private static final long serialVersionUID = 1173984872572414699L;/* First node of condition queue.*/private transient Node firstWaiter;/* Last node of condition queue.*/private transient Node lastWaiter;public ConditionObject() {}/* 1.与同步队列不同,条件队列头尾指针是firstWaiter跟lastWaiter* 2.条件队列是在获取锁之后,也就是临界区进行操作,因此很多地方不用考虑并发*/private Node addConditionWaiter() {Node t = lastWaiter;//如果最后一个节点被取消,则删除队列中被取消的节点//至于为啥是最后一个节点后面会分析if (t != null && t.waitStatus != Node.CONDITION) {//删除所有被取消的节点unlinkCancelledWaiters();t = lastWaiter;}//创建一个类型为CONDITION的节点并加入队列,由于在临界区,所以这里不用并发控制Node node = new Node(Thread.currentThread(), Node.CONDITION);if (t == null)firstWaiter = node;elset.nextWaiter = node;lastWaiter = node;return node;}/* 发信号,通知遍历条件队列当中的节点转移到同步队列当中,准备排队获取锁*/private void doSignal(Node first) {do {if ((firstWaiter = first.nextWaiter) == null)lastWaiter = null;first.nextWaiter = null;} while (!transferForSignal(first) && //转移节点(first = firstWaiter) != null);}/* 通知所有节点移动到同步队列当中,并将节点从条件队列删除*/private void doSignalAll(Node first) {lastWaiter = firstWaiter = null;do {Node next = first.nextWaiter;first.nextWaiter = null;transferForSignal(first);first = next;} while (first != null);}/* 删除条件队列当中被取消的节点*/private void unlinkCancelledWaiters() {Node t = firstWaiter;Node trail = null;while (t != null) {Node next = t.nextWaiter;if (t.waitStatus != Node.CONDITION) {t.nextWaiter = null;if (trail == null)firstWaiter = next;elsetrail.nextWaiter = next;if (next == null)lastWaiter = trail;} elsetrail = t;t = next;}}/* 发新号,通知条件队列当中节点到同步队列当中去排队*/public final void signal() {if (!isHeldExclusively())//节点不能已经持有独占锁throw new IllegalMonitorStateException();Node first = firstWaiter;if (first != null)/* 发信号通知条件队列的节点准备到同步队列当中去排队*/doSignal(first);}/* 唤醒所有条件队列的节点转移到同步队列当中*/public final void signalAll() {if (!isHeldExclusively())throw new IllegalMonitorStateException();Node first = firstWaiter;if (first != null)doSignalAll(first);}public final void awaitUninterruptibly() {Node node = addConditionWaiter();int savedState = fullyRelease(node);boolean interrupted = false;while (!isOnSyncQueue(node)) {LockSupport.park(this);if (Thread.interrupted())interrupted = true;}if (acquireQueued(node, savedState) || interrupted)selfInterrupt();}/* 该模式表示在退出等待时重新中断*/private static final int REINTERRUPT = 1;/* 异常中断*/private static final int THROW_IE = -1;/* 这里的判断逻辑是:* 1.如果现在不是中断的,即正常被signal唤醒则返回0* 2.如果节点由中断加入同步队列则返回THROW_IE,由signal加入同步队列则返回REINTERRUPT*/private int checkInterruptWhileWaiting(Node node) {return Thread.interrupted() ? (transferAfterCancelledWait(node) ? THROW_IE : REINTERRUPT) : 0;}/* 根据中断时机选择抛出异常或者设置线程中断状态*/private void reportInterruptAfterWait(int interruptMode)throws InterruptedException {if (interruptMode == THROW_IE)throw new InterruptedException();else if (interruptMode == REINTERRUPT)selfInterrupt();}/* 加入条件队列等待,条件队列入口*/public final void await() throws InterruptedException {//T2进来//如果当前线程被中断则直接抛出异常if (Thread.interrupted())throw new InterruptedException();//把当前节点加入条件队列Node node = addConditionWaiter();//释放掉已经获取的独占锁资源int savedState = fullyRelease(node);//T2释放锁int interruptMode = 0;//如果不在同步队列中则不断挂起while (!isOnSyncQueue(node)) {LockSupport.park(this);//T1被阻塞//这里被唤醒可能是正常的signal操作也可能是中断if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)break;}/* 走到这里说明节点已经条件满足被加入到了同步队列中或者中断了* 这个方法很熟悉吧?就跟独占锁调用同样的获取锁方法,从这里可以看出条件队列只能用于独占锁* 在处理中断之前首先要做的是从同步队列中成功获取锁资源*/if (acquireQueued(node, savedState) && interruptMode != THROW_IE)interruptMode = REINTERRUPT;//走到这里说明已经成功获取到了独占锁,接下来就做些收尾工作//删除条件队列中被取消的节点if (node.nextWaiter != null) // clean up if cancelledunlinkCancelledWaiters();//根据不同模式处理中断if (interruptMode != 0)reportInterruptAfterWait(interruptMode);}public final boolean await(long time, TimeUnit unit) throws InterruptedException {long nanosTimeout = unit.toNanos(time);if (Thread.interrupted())throw new InterruptedException();Node node = addConditionWaiter();int savedState = fullyRelease(node);final long deadline = System.nanoTime() + nanosTimeout;boolean timedout = false;int interruptMode = 0;while (!isOnSyncQueue(node)) {if (nanosTimeout <= 0L) {timedout = transferAfterCancelledWait(node);break;}if (nanosTimeout >= spinForTimeoutThreshold)LockSupport.parkNanos(this, nanosTimeout);if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)break;nanosTimeout = deadline - System.nanoTime();}if (acquireQueued(node, savedState) && interruptMode != THROW_IE)interruptMode = REINTERRUPT;if (node.nextWaiter != null)unlinkCancelledWaiters();if (interruptMode != 0)reportInterruptAfterWait(interruptMode);return !timedout;}final boolean isOwnedBy(AbstractQueuedSynchronizer sync) {return sync == AbstractQueuedSynchronizer.this;}protected final boolean hasWaiters() {if (!isHeldExclusively())throw new IllegalMonitorStateException();for (Node w = firstWaiter; w != null; w = w.nextWaiter) {if (w.waitStatus == Node.CONDITION)return true;}return false;}protected final int getWaitQueueLength() {if (!isHeldExclusively())throw new IllegalMonitorStateException();int n = 0;for (Node w = firstWaiter; w != null; w = w.nextWaiter) {if (w.waitStatus == Node.CONDITION)++n;}return n;}/* 得到同步队列当中所有在等待的Thread集合*/protected final Collection<Thread> getWaitingThreads() {if (!isHeldExclusively())throw new IllegalMonitorStateException();ArrayList<Thread> list = new ArrayList<Thread>();for (Node w = firstWaiter; w != null; w = w.nextWaiter) {if (w.waitStatus == Node.CONDITION) {Thread t = w.thread;if (t != null)list.add(t);}}return list;}}/* unsafe魔法类,直接绕过虚拟机内存管理机制,修改内存*/private static final Unsafe unsafe = Unsafe.getUnsafe();//偏移量private static final long stateOffset;private static final long headOffset;private static final long tailOffset;private static final long waitStatusOffset;private static final long nextOffset;static {try {//状态偏移量stateOffset = unsafe.objectFieldOffset(AbstractQueuedSynchronizer.class.getDeclaredField("state"));//head指针偏移量,head指向CLH队列的头部headOffset = unsafe.objectFieldOffset(AbstractQueuedSynchronizer.class.getDeclaredField("head"));tailOffset = unsafe.objectFieldOffset(AbstractQueuedSynchronizer.class.getDeclaredField("tail"));waitStatusOffset = unsafe.objectFieldOffset(Node.class.getDeclaredField("waitStatus"));nextOffset = unsafe.objectFieldOffset(Node.class.getDeclaredField("next"));} catch (Exception ex) {throw new Error(ex);}}/* CAS 修改头部节点指向. 并发入队时使用.*/private final boolean compareAndSetHead(Node update) {return unsafe.compareAndSwapObject(this, headOffset, null, update);}/* CAS 修改尾部节点指向. 并发入队时使用.*/private final boolean compareAndSetTail(Node expect, Node update) {return unsafe.compareAndSwapObject(this, tailOffset, expect, update);}/* CAS 修改信号量状态.*/private static final boolean compareAndSetWaitStatus(Node node, int expect, int update) {return unsafe.compareAndSwapInt(node, waitStatusOffset,expect, update);}/* 修改节点的后继指针.*/private static final boolean compareAndSetNext(Node node, Node expect, Node update) {return unsafe.compareAndSwapObject(node, nextOffset, expect, update);}
}

2. AQS 框架具体实现 - 独占锁实现 ReentrantLock 源码

实现 ReentrantLock 的三大核心原理:

  • LocksSuport:加锁解锁
  • 自旋:如果没有加锁成功就一直自旋
  • CAS:保证只能有一个线程可以加锁成功
  • queue 队列:用容器保存上面未加锁成功的阻塞线程,要解锁的时候从容器中拿出线程进行解锁(为什么选择队列?因为ReentrantLock要实现公平与非公平锁,所以选择先进先出的队列)
public class ReentrantLock implements Lock, java.io.Serializable {private static final long serialVersionUID = 7373984872572414699L;/* 内部调用AQS的动作,都基于该成员属性实现*/private final Sync sync;/* ReentrantLock锁同步操作的基础类,继承自AQS框架.* 该类有两个继承类,1、NonfairSync 非公平锁,2、FairSync公平锁*/abstract static class Sync extends AbstractQueuedSynchronizer {private static final long serialVersionUID = -5179523762034025860L;/* 加锁的具体行为由子类实现*/abstract void lock();/* 尝试获取非公平锁*/final boolean nonfairTryAcquire(int acquires) {//acquires = 1final Thread current = Thread.currentThread();int c = getState();/* 不需要判断同步队列(CLH)中是否有排队等待线程* 判断state状态是否为0,不为0可以加锁*/if (c == 0) {//unsafe操作,cas修改state状态if (compareAndSetState(0, acquires)) {//独占状态锁持有者指向当前线程setExclusiveOwnerThread(current);return true;}}/* state状态不为0,判断锁持有者是否是当前线程,* 如果是当前线程持有 则state+1*/else if (current == getExclusiveOwnerThread()) {int nextc = c + acquires;if (nextc < 0) // overflowthrow new Error("Maximum lock count exceeded");setState(nextc);return true;}//加锁失败return false;}/* 释放锁*/protected final boolean tryRelease(int releases) {int c = getState() - releases;if (Thread.currentThread() != getExclusiveOwnerThread())throw new IllegalMonitorStateException();boolean free = false;if (c == 0) {free = true;setExclusiveOwnerThread(null);}setState(c);return free;}/* 判断持有独占锁的线程是否是当前线程*/protected final boolean isHeldExclusively() {return getExclusiveOwnerThread() == Thread.currentThread();}//返回条件对象final ConditionObject newCondition() {return new ConditionObject();}final Thread getOwner() {return getState() == 0 ? null : getExclusiveOwnerThread();}final int getHoldCount() {return isHeldExclusively() ? getState() : 0;}final boolean isLocked() {return getState() != 0;}private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException {s.defaultReadObject();setState(0); // reset to unlocked state}}/* 非公平锁*/static final class NonfairSync extends Sync {private static final long serialVersionUID = 7316153563782823691L;/* 加锁行为*/final void lock() {/* 第一步:直接尝试加锁* 与公平锁实现的加锁行为一个最大的区别在于,此处不会去判断同步队列(CLH队列)中* 是否有排队等待加锁的节点,上来直接加锁(判断state是否为0,CAS修改state为1)* ,并将独占锁持有者 exclusiveOwnerThread 属性指向当前线程* 如果当前有人占用锁,再尝试去加一次锁*/if (compareAndSetState(0, 1))setExclusiveOwnerThread(Thread.currentThread());else//AQS定义的方法,加锁acquire(1);}/* 父类AbstractQueuedSynchronizer.acquire()中调用本方法*/protected final boolean tryAcquire(int acquires) {return nonfairTryAcquire(acquires);}}/* 公平锁*/static final class FairSync extends Sync {private static final long serialVersionUID = -3000897897090466540L;final void lock() {acquire(1);}/* 重写aqs中的方法逻辑* 尝试加锁,被AQS的acquire()方法调用*/protected final boolean tryAcquire(int acquires) {final Thread current = Thread.currentThread();int c = getState();if (c == 0) {/* 与非公平锁中的区别,需要先判断队列当中是否有等待的节点* 如果没有则可以尝试CAS获取锁*/if (!hasQueuedPredecessors() && compareAndSetState(0, acquires)) {//独占线程指向当前线程setExclusiveOwnerThread(current);return true;}} else if (current == getExclusiveOwnerThread()) {int nextc = c + acquires;if (nextc < 0)throw new Error("Maximum lock count exceeded");setState(nextc);return true;}return false;}}/* 默认构造函数,创建非公平锁对象*/public ReentrantLock() {sync = new NonfairSync();}/* 根据要求创建公平锁或非公平锁*/public ReentrantLock(boolean fair) {sync = fair ? new FairSync() : new NonfairSync();}/* 加锁*/public void lock() {sync.lock();}/* 尝试获去取锁,获取失败被阻塞,线程被中断直接抛出异常*/public void lockInterruptibly() throws InterruptedException {sync.acquireInterruptibly(1);}/* 尝试加锁*/public boolean tryLock() {return sync.nonfairTryAcquire(1);}/* 指定等待时间内尝试加锁*/public boolean tryLock(long timeout, TimeUnit unit) throws InterruptedException {return sync.tryAcquireNanos(1, unit.toNanos(timeout));}/* 尝试去释放锁*/public void unlock() {sync.release(1);}/* 返回条件对象*/public Condition newCondition() {return sync.newCondition();}/* 返回当前线程持有的state状态数量*/public int getHoldCount() {return sync.getHoldCount();}/* 查询当前线程是否持有锁*/public boolean isHeldByCurrentThread() {return sync.isHeldExclusively();}/* 状态表示是否被Thread加锁持有*/public boolean isLocked() {return sync.isLocked();}/* 是否公平锁?是返回true 否则返回 false*/public final boolean isFair() {return sync instanceof FairSync;}/* 获取持有锁的当前线程*/protected Thread getOwner() {return sync.getOwner();}/* 判断队列当中是否有在等待获取锁的Thread节点*/public final boolean hasQueuedThreads() {return sync.hasQueuedThreads();}/* 当前线程是否在同步队列中等待*/public final boolean hasQueuedThread(Thread thread) {return sync.isQueued(thread);}/* 获取同步队列长度*/public final int getQueueLength() {return sync.getQueueLength();}/* 返回Thread集合,排队中的所有节点Thread会被返回*/protected Collection<Thread> getQueuedThreads() {return sync.getQueuedThreads();}/* 条件队列当中是否有正在等待的节点*/public boolean hasWaiters(Condition condition) {if (condition == null)throw new NullPointerException();if (!(condition instanceof AbstractQueuedSynchronizer.ConditionObject))throw new IllegalArgumentException("not owner");return sync.hasWaiters((AbstractQueuedSynchronizer.ConditionObject) condition);}}