> 文章列表 > C++笔记——第十四篇 哈希

C++笔记——第十四篇 哈希

C++笔记——第十四篇 哈希

目录

 一、unordered系列关联式容器

1.1 unordered_map

        1.1.1 unordered_map的文档介绍

        1.1.2 unordered_map的接口说明

二、 底层结构

2.1 哈希概念

2.2 哈希冲突

2.3 哈希函数

2.4 哈希冲突解决

        2.4.1 闭散列

                        1. 线性探测

        2. 二次探测 

        2.4.2 开散列

三、 哈希的应用

3.1 位图

        3.1.1 位图概念

3.2 布隆过滤器

3.2.1 布隆过滤器概念

3.2.1 布隆过滤器的查找

3.2.2 布隆过滤器删除

 3.2.3 布隆过滤器优势和缺陷



 一、unordered系列关联式容器


1.1 unordered_map


        1.1.1 unordered_map的文档介绍


1. unordered_map是存储<key, value>键值对的关联式容器,其允许通过keys快速的索引到与其对应的value。
2. 在unordered_map中,键值通常用于惟一地标识元素,而映射值是一个对象,其内容与此键关联。键和映射值的类型可能不同。
3. 在内部,unordered_map没有对<kye, value>按照任何特定的顺序排序, 为了能在常数范围内找到key所对应的value,unordered_map将相同哈希值的键值对放在相同的桶中
4. unordered_map容器通过key访问单个元素要比map快,但它通常在遍历元素子集的范围迭代方面效率较低
5. unordered_maps实现了直接访问操作符(operator[]),它允许使用key作为参数直接访问value。
6. 它的迭代器至少是前向迭代器。


        1.1.2 unordered_map的接口说明


函数声明 功能介绍
unordered_map —— 构造不同格式的unordered_map对象

bool empty() const ——检测unordered_map是否为空
size_t size() const ——获取unordered_map的有效元素个数

begin —— 返回unordered_map第一个元素的迭代器
end —— 返回unordered_map最后一个元素下一个位置的迭代器
cbegin —— 返回unordered_map第一个元素的const迭代器
cend —— 返回unordered_map最后一个元素下一个位置的const迭代器

operator[] —— 返回与key对应的value,没有一个默认值

注意:该函数中实际调用哈希桶的插入操作,用参数key与V()构造一个默认值往底层哈希桶中插入,如果key不在哈希桶中,插入成功,返回V(),插入失败,说明key已经在哈希桶中,将key对应的value返回。 

iterator find(const K& key) —— 返回key在哈希桶中的位置
size_t count(const K& key) —— 返回哈希桶中关键码为key的键值对的个数

注意:unordered_map中key是不能重复的,因此count函数的返回值最大为1

insert —— 向容器中插入键值对
erase —— 删除容器中的键值对
void clear() —— 清空容器中有效元素个数
void swap(unordered_map&) —— 交换两个容器中的元素 

size_t bucket_count()const —— 返回哈希桶中桶的总个数
size_t bucket_size(size_t n)const —— 返回n号桶中有效元素的总个数
size_t bucket(const K& key) —— 返回元素key所在的桶号 



二、 底层结构



unordered系列的关联式容器之所以效率比较高,是因为其底层使用了哈希结构 


2.1 哈希概念


顺序结构以及平衡树中,元素关键码与其存储位置之间没有对应的关系,因此在查找一个元素时,必须要经过关键码的多次比较。顺序查找时间复杂度为O(N),平衡树中为树的高度,即O(logN ),搜索的效率取决于搜索过程中元素的比较次数。
理想的搜索方法:可以不经过任何比较,一次直接从表中得到要搜索的元素。 如果构造一种存储结构,通过某种函数(hashFunc)使元素的存储位置与它的关键码之间能够建立一一映射的关系,那么在查找时通过该函数可以很快找到该元素。

当向该结构中:
插入元素

根据待插入元素的关键码,以此函数计算出该元素的存储位置并按此位置进行存放

搜索元素
对元素的关键码进行同样的计算,把求得的函数值当做元素的存储位置,在结构中按此位置取元素比较,若关键码相等,则搜索成功

该方式即为哈希(散列)方法,哈希方法中使用的转换函数称为哈希(散列)函数,构造出来的结构称为哈希表(Hash Table)(或者称散列表) 

用该方法进行搜索不必进行多次关键码的比较,因此搜索的速度比较快


2.2 哈希冲突


不同关键字通过相同哈希函数计算出相同的哈希地址,该种现象称为哈希冲突或哈希碰撞。
把具有不同关键码而具有相同哈希地址的数据元素称为“同义词”。


2.3 哈希函数


引起哈希冲突的一个原因可能是:哈希函数设计不够合理。

哈希函数设计原则:
哈希函数的定义域必须包括需要存储的全部关键码,而如果散列表允许有m个地址时,其值域必须在0到m-1之间
哈希函数计算出来的地址能均匀分布在整个空间中
哈希函数应该比较简单

常见哈希函数
1. 直接定制法--(常用)
取关键字的某个线性函数为散列地址:Hash(Key)= A*Key + B 优点:简单、均匀 缺点:需要事先知道关键字的分布情况 使用场景:适合查找比较小且连续的情况 面试题:字符串中第一个只出现一次字符

2. 除留余数法--(常用)
设散列表中允许的地址数为m,取一个不大于m,但最接近或者等于m的质数p作为除数,按照哈希函数:Hash(key) = key% p(p<=m),将关键码转换成哈希地址

3. 平方取中法
假设关键字为1234,对它平方就是1522756,抽取中间的3位227作为哈希地址; 再比如关键字为4321,对它平方就是18671041,抽取中间的3位671(或710)作为哈希地址 平方取中法比较适合:不知道关键字的分布,而位数又不是很大的情况

4. 折叠法--(了解)
折叠法是将关键字从左到右分割成位数相等的几部分(最后一部分位数可以短些),然后将这几部分叠加求和,并按散列表表长,取后几位作为散列地址。
折叠法适合事先不需要知道关键字的分布,适合关键字位数比较多的情况

5. 随机数法--(了解)
选择一个随机函数,取关键字的随机函数值为它的哈希地址,即H(key) = random(key),其中random为随机数函数。通常应用于关键字长度不等时采用此法

6. 数学分析法--(了解)
设有n个d位数,每一位可能有r种不同的符号,这r种不同的符号在各位上出现的频率不一定相同,可能在某些位上分布比较均匀,每种符号出现的机会均等,在某些位上分布不均匀只有某几种符号经常出现。可根据散列表的大小,选择其中各种符号分布均匀的若干位作为散列地址。

 注意:哈希函数设计的越精妙,产生哈希冲突的可能性就越低,但是无法避免哈希冲突


2.4 哈希冲突解决


解决哈希冲突两种常见的方法是:闭散列和开散列 


        2.4.1 闭散列


闭散列:也叫开放定址法,当发生哈希冲突时,如果哈希表未被装满,说明在哈希表中必然还有空位置,那么可以把key存放到冲突位置中的“下一个” 空位置中去。那如何寻找下一个空位置呢?

1. 线性探测

从发生冲突的位置开始,依次向后探测,直到寻找到下一个空位置为止。

插入:通过哈希函数获取待插入元素在哈希表中的位置

如果该位置中没有元素则直接插入新元素,如果该位置中有元素发生哈希冲突,使用线性探
测找到下一个空位置,插入新元素。

删除:采用闭散列处理哈希冲突时,不能随便物理删除哈希表中已有的元素,若直接删除元素会影响其他元素的搜索。比如删除元素4,如果直接删除掉,44查找起来可能会受影响。因此线性探测采用标记的伪删除法来删除一个元素。

// 哈希表每个空间给个标记
// EMPTY此位置空, EXIST此位置已经有元素, DELETE元素已经删除
enum State{EMPTY, EXIST, DELETE};

一旦发生哈希冲突,所有的冲突连在一起,容易产生数据“堆积”,即:不同关键码占据
了可利用的空位置,使得寻找某关键码的位置需要许多次比较,导致搜索效率降低。 

2. 二次探测 

找下一个空位置的方法为: =(start +i^2 )% m,
或者: = ( start - i^2 )% m。其中:i = 1,2,3…, 是通过散列函数Hash(x)对元素的关键码 key 进行
计算得到的位置,m是表的大小。 

最大的缺陷就是空间利用率比较低


        2.4.2 开散列


开散列
开散列法又叫链地址法(开链法),首先对关键码集合用散列函数计算散列地址,具有相同地址的关键码归于同一子集合,每一个子集合称为一个桶,各个桶中的元素通过一个单链表链接起来,各链表的头结点存储在哈希表中。

开散列中每个桶中放的都是发生哈希冲突的元素。

每个哈希桶中刚好挂一个节点,再继续插入元素时,每一次都会发生哈希冲突,因此,在元素个数刚好等于桶的个数时,可以给哈希表增容。



三、 哈希的应用



3.1 位图


        3.1.1 位图概念


用每一位来存放某种状态,适用于海量数据,数据无重复的场景。通常是用来判断某个数据存不存在的。

1. 快速查找某个数据是否在一个集合中
2. 排序
3. 求两个集合的交集、并集等
4. 操作系统中磁盘块标记


3.2 布隆过滤器


3.2.1 布隆过滤器概念


用多个哈希函数,将一个数据映射到位图结构中。此种方式不仅可以提升查询效率,也可以节省大量的内存空间。


3.2.1 布隆过滤器的查找


分别计算每个哈希值对应的比特位置存储的是否为零,只要有一个为零,代表该元素一定不在哈希表中,否则可能在哈希表中。

注意:布隆过滤器如果说某个元素不存在时,该元素一定不存在,如果该元素存在时,该元素可能存在,因为有些哈希函数存在一定的误判。


3.2.2 布隆过滤器删除


布隆过滤器不能直接支持删除工作,因为在删除一个元素时,可能会影响其他元素。

一种支持删除的方法:将布隆过滤器中的每个比特位扩展成一个小的计数器,插入元素时给k个计数器(k个哈希函数计算出的哈希地址)加一,删除元素时,给k个计数器减一,通过多占用几倍存储空间的代价来增加删除操作。
缺陷:
1. 无法确认元素是否真正在布隆过滤器中
2. 存在计数回绕


 3.2.3 布隆过滤器优势和缺陷


1. 增加和查询元素的时间复杂度为:O(K), (K为哈希函数的个数,一般比较小),与数据量大小无关
2. 哈希函数相互之间没有关系,方便硬件并行运算
3. 布隆过滤器不需要存储元素本身,在某些对保密要求比较严格的场合有很大优势
4. 在能够承受一定的误判时,布隆过滤器比其他数据结构有这很大的空间优势
5. 数据量很大时,布隆过滤器可以表示全集,其他数据结构不能
6. 使用同一组散列函数的布隆过滤器可以进行交、并、差运算


1. 有误判率,即存在假阳性(False Position),即不能准确判断元素是否在集合中(补救方法:再建立一个白名单,存储可能会误判的数据)
2. 不能获取元素本身
3. 一般情况下不能从布隆过滤器中删除元素
4. 如果采用计数方式删除,可能会存在计数回绕问题