CSP202209-5 高维亚空间超频物质变压缩技术
CSP202209-5高维亚空间超频物质变压缩技术
题意:
给定 nnn 块黄金,每个黄金有体积 viv_ivi。将黄金分组进行压缩,每一组内的黄金编号连续,压缩一组黄金的代价为 (s−L)2(s-L)^2(s−L)2,sss 为改组黄金的体积和。
每块黄金有质量 mim_imi,分组必须满足 组之间编号最大的的黄金质量递增。
询问分段压缩的最小代价。
解析:
子任务1,2
令 fif_ifi 为前 iii 块黄金都压缩完成的最小代价。
则 fi=min0<j<i{fj+(si−sj−L)2}(mi>mj)f_i = \\min\\limits_{0<j<i}\\Big\\{ f_j + (s_i-s_j-L)^2\\Big\\}(m_i>m_j)fi=0<j<imin{fj+(si−sj−L)2}(mi>mj),sss 为 vvv 的前缀和
初始条件 f0=0f_0 = 0f0=0,答案为 fnf_nfn。
此时时间时间复杂度为 O(n2)O(n^2)O(n2)
可以通过前两个测试点
代码如下:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef double db;
#define fi first
#define se second
#define debug(x) cerr << #x << ": " << (x) << endl
#define rep(i, a, b) for(int i = (a); i <= (b); i++)
const int maxn = 1e6+10;
const int maxm = 1e5+10;
const double eps = 1e-12;
const ll INF = 0x3f3f3f3f3f3f3f3f;
typedef pair<int, int> pii;
#define int llll n, L;
ll v[maxn], m[maxn], s[maxn];
ll f[maxn];signed main(){ios::sync_with_stdio(false);cin.tie(0); cout.tie(0);cin >> n >> L;for(int i = 1; i <= n; i++){cin >> s[i];s[i] += s[i-1];}for(int i = 1; i <= n; i++)cin >> m[i];memset(f, INF, sizeof(f));f[0] = 0;for(int i = 1; i <= n; i++){for(int j = 0; j < i; j++){ //上一组的终点if(m[i] <= m[j])continue; f[i] = min(f[i], f[j]+(s[i]-s[j]-L) * (s[i]-s[j]-L));}}cout << f[n] << endl;return 0;}
子任务3
因为 mi=im_i = imi=i,所以对于 iii,可以从任意 j(j<i)j(j<i)j(j<i) 进行转移。
状态转移方程:fi=min0<j<i{fj+(si−sj−L)2}f_i = \\min\\limits_{0<j<i}\\Big\\{ f_j + (s_i-s_j-L)^2\\Big\\}fi=0<j<imin{fj+(si−sj−L)2}因为有 si×sjs_i\\times s_jsi×sj 项,可以考虑斜率优化。
整理一下:fj+sj2+2Lsj=2si×sj+fi−si2+2Lsif_j+s_j^2+2Ls_j = 2s_i\\times s_j+f_i-s_i^2+2Ls_ifj+sj2+2Lsj=2si×sj+fi−si2+2Lsi确实是可以斜率优化的。y=fj+sj2+2Lsj,k=2si,x=sjy = f_j+s_j^2+2Ls_j, k = 2s_i, x = s_jy=fj+sj2+2Lsj,k=2si,x=sj
而且 k,xk,xk,x 都是单调的,所以可以用单调队列维护下凸壳。
代码如下:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef double db;
#define fi first
#define se second
#define debug(x) cerr << #x << ": " << (x) << endl
#define rep(i, a, b) for(int i = (a); i <= (b); i++)
const int maxn = 1e6+10;
const int maxm = 1e5+10;
const double eps = 1e-12;
const ll INF = 0x3f3f3f3f3f3f3f3f;
typedef pair<int, int> pii;
#define int ll#define x(a) (s[a])
#define y(a) (f[a]+s[a]*s[a]+2*L*s[a])
#define k(a) (2*s[a])ll n, L;
ll v[maxn], m[maxn], s[maxn], p[maxn];
int q[maxn], hh = 1, tt = 0;
ll f[maxn];long double slope(int a, int b){long double x1 = (long double)x(a);long double y1 = (long double)y(a);long double x2 = (long double)x(b);long double y2 = (long double)y(b);if(fabs(x2-x1) < eps)return y2 > y1 ? 1e18 : -1e18;elsereturn (y2-y1)/(x2-x1);
}signed main(){ios::sync_with_stdio(false);cin.tie(0); cout.tie(0);cin >> n >> L;for(int i = 1; i <= n; i++){cin >> s[i];s[i] += s[i-1];}for(int i = 1; i <= n; i++)cin >> m[i];if(n <= 2000){ memset(f, INF, sizeof(f));f[0] = 0;for(int i = 1; i <= n; i++){for(int j = 0; j < i; j++){if(m[i] <= m[j])continue; f[i] = min(f[i], f[j]+(s[i]-s[j]-L) * (s[i]-s[j]-L));}}cout << f[n] << endl;return 0;}else{q[++tt] = 0;f[0] = 0; for(int i = 1; i <= n; i++){while(hh < tt && slope(q[hh], q[hh+1]) <= k(i))hh++; int j = q[hh];f[i] = f[j] + (s[i]-s[j]-L) * (s[i]-s[j]-L);while(hh < tt && slope(q[tt-1], q[tt]) >= slope(q[tt], i))tt--; q[++tt] = i;} cout << f[n] << endl;return 0;}return 0;
}
子任务4
iii 的决策点 jjj 必须满足 mj<mim_j < m_imj<mi,增加一维偏序,可以CDQ分治。
根据黄金质量分为左右两部分。当左侧的状态值计算完成,用左侧的状态更新右侧的状态,必然满足质量的限制。
用左侧值更新右侧值时,左侧的 xxx 单调,右侧处理成 kkk 单调的情况,可以继续用单调队列维护下凸壳。
时间复杂度为 O(nlog2n)O(n\\log^2 n)O(nlog2n)
代码:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef double db;
#define fi first
#define se second
#define debug(x) cerr << #x << ": " << (x) << endl
#define rep(i, a, b) for(int i = (a); i <= (b); i++)
const int maxn = 1e6+10;
const int maxm = 1e5+10;
const double eps = 1e-12;
const ll INF = 0x3f3f3f3f3f3f3f3f;
typedef pair<int, int> pii;
#define int ll#define x(a) (s[a])
#define y(a) (f[a]+s[a]*s[a]+2*L*s[a])
#define k(a) (2*s[a])ll n, L;
ll m[maxn], s[maxn];
int q[maxn], hh = 1, tt = 0;
ll f[maxn];
struct node{int m, id;ll k, x, y;
}a[maxn], tmp[maxn];
bool cmpm(node a, node b){if(a.m == b.m)return a.id < b.id;elsereturn a.m < b.m;
}
bool cmpx(node a, node b){return a.x < b.x;
}
long double slope(int i, int j){long double x1 = (long double)a[i].x;long double y1 = (long double)a[i].y;long double x2 = (long double)a[j].x;long double y2 = (long double)a[j].y;if(fabs(x2-x1) < eps)return y2 > y1 ? 1e18 : -1e18;elsereturn (y2-y1)/(x2-x1);
}void cdq(int ml, int mr, int pl, int pr){if(pl > pr)return;if(ml == mr){for(int i = pl; i <= pr; i++){int j = a[i].id;a[i].y = f[j] + s[j]*s[j] + 2 * L * s[j];} return; }int mmid = (ml+mr) >> 1;int pmid = upper_bound(a+pl, a+1+pr, (node){mmid, n+1, 0, 0}, cmpm)-a-1;cdq(ml, mmid, pl, pmid); int hh = 1, tt = 0;for(int i = pl; i <= pmid; i++){while(hh < tt && slope(q[tt-1], q[tt]) >= slope(q[tt], i))tt--;q[++tt] = i;}if(pr > pmid){sort(a+pmid+1, a+pr+1, cmpx);for(int i = pmid+1; i <= pr; i++){while(hh < tt && slope(q[hh], q[hh+1]) <= a[i].k)hh++;if(hh <= tt){int id = a[i].id;int j = a[q[hh]].id;if(id < j)continue;f[id] = min(f[id], f[j]+(s[id]-s[j]-L)*(s[id]-s[j]-L));}}sort(a+pmid+1, a+pr+1, cmpm);}cdq(mmid+1, mr, pmid+1, pr); sort(a+pl, a+pr+1, cmpx);
}
signed main(){ios::sync_with_stdio(false);cin.tie(0); cout.tie(0);cin >> n >> L;for(int i = 1; i <= n; i++){cin >> s[i];s[i] += s[i-1];}for(int i = 1; i <= n; i++)cin >> m[i];memset(f, INF, sizeof(f));f[1] = (s[1]-L) * (s[1]-L);for(int i = 1; i <= n; i++){a[i].id = i;a[i].m = m[i];a[i].k = 2 * s[i];a[i].x = s[i];f[i] = (s[i]-L) * (s[i]-L);}sort(a+1, a+1+n, cmpm); //按质量排序 cdq(1, n, 1, n);cout << f[n] << endl;return 0;}