> 文章列表 > 代码随想录算法训练营第五十九天 | 503. 下一个更大元素 II、42. 接雨水

代码随想录算法训练营第五十九天 | 503. 下一个更大元素 II、42. 接雨水

代码随想录算法训练营第五十九天 | 503. 下一个更大元素 II、42. 接雨水

503. 下一个更大元素 II

方法一:将两个nums数组放在一起,使用单调栈求下一个更大元素,最后再把结果集即result数组resize到原数组大小就可以了。

方法二:在遍历的过程中模拟走了两遍nums

class Solution {
public:vector<int> nextGreaterElements(vector<int>& nums) {vector<int> res(nums.size(), -1);if (nums.size() == 0) return res;stack<int> st;st.push(0);for (int i = 1; i < nums.size() * 2; i++) {//因为是模拟两遍nums数组,所以真正的i要对nums.size()取余if (nums[i % nums.size()] < nums[st.top()]) st.push(i % nums.size());else if (nums[i % nums.size()] == nums[st.top()]) st.push(i % nums.size());else {while (!st.empty() && nums[i % nums.size()] > nums[st.top()]) {res[st.top()] = nums[i % nums.size()];st.pop();}st.push(i % nums.size());}}return res;}
};

42. 接雨水

暴力解法

按照列来计算如图:

如果按照列来计算的话,宽度一定是1了,同时再把每一列的雨水的高度求出来就可以了。

可以看出每一列雨水的高度,取决于,该列 左侧最高的柱子和右侧最高的柱子中最矮的那个柱子的高度。

 首先从头遍历所有的列,并且要注意第一个柱子和最后一个柱子不接雨水

因为每次遍历列的时候,还要向两边寻找最高的列,所以时间复杂度为O(n^2),空间复杂度为O(1)

但暴力解法超时

双指针

通过暴力解法可以看出只要记录左边柱子的最高高度 和 右边柱子的最高高度,就可以计算当前位置的雨水面积,这就是通过列来计算。

当前列雨水面积:min(左边柱子的最高高度,记录右边柱子的最高高度) - 当前柱子高度。

为了得到两边的最高高度,使用了双指针来遍历,每到一个柱子都向两边遍历一遍,这其实是有重复计算的。

把每一个位置的左边最高高度记录在一个数组上(maxLeft),右边最高高度记录在一个数组上(maxRight),这样就避免了重复计算。

当前位置,左边的最高高度是前一个位置的左边最高高度和本高度的最大值。

即从左向右遍历:maxLeft[i] = max(height[i], maxLeft[i - 1]);

从右向左遍历:maxRight[i] = max(height[i], maxRight[i + 1]);

单调栈

1、单调栈是按照行方向来计算雨水,如图:

2、使用单调栈内元素的顺序

 

从栈头(元素从栈头弹出)到栈底的顺序应该是从小到大的顺序。

因为一旦发现添加的柱子高度大于栈头元素了,此时就出现凹槽了,栈头元素就是凹槽底部的柱子,栈头第二个元素就是凹槽左边的柱子,而添加的元素就是凹槽右边的柱子。

如图:

3、遇到相同高度的柱子怎么办

遇到相同的元素,更新栈内下标,就是将栈里元素(旧下标)弹出,将新元素(新下标)加入栈中。

例如 5 5 1 3 这种情况。如果添加第二个5的时候就应该将第一个5的下标弹出,把第二个5添加到栈中。

因为我们要求宽度的时候 如果遇到相同高度的柱子,需要使用最右边的柱子来计算宽度

如图所示:

4、栈里要保存什么数值 

使用单调栈,也是通过 长 * 宽 来计算雨水面积的。

长就是通过柱子的高度来计算,宽是通过柱子之间的下标来计算,

那么栈里有没有必要存一个pair<int, int>类型的元素,保存柱子的高度和下标呢。

其实不用,栈里就存放下标就行,想要知道对应的高度,通过height[stack.top()] 就知道弹出的下标对应的高度了。

所以栈的定义如下:

stack<int> st; // 存着下标,计算的时候用下标对应的柱子高度

以下逻辑主要就是三种情况

  • 情况一:当前遍历的元素(柱子)高度小于栈顶元素的高度 height[i] < height[st.top()]
  • 情况二:当前遍历的元素(柱子)高度等于栈顶元素的高度 height[i] == height[st.top()]
  • 情况三:当前遍历的元素(柱子)高度大于栈顶元素的高度 height[i] > height[st.top()]

先将下标0的柱子加入到栈中,st.push(0);。 栈中存放我们遍历过的元素,所以先将下标0加进来。

然后开始从下标1开始遍历所有的柱子,for (int i = 1; i < height.size(); i++)

如果当前遍历的元素(柱子)高度小于栈顶元素的高度,就把这个元素加入栈中,因为栈里本来就要保持从小到大的顺序(从栈头到栈底)。

如果当前遍历的元素(柱子)高度等于栈顶元素的高度,要跟更新栈顶元素,因为遇到相相同高度的柱子,需要使用最右边的柱子来计算宽度。

如果当前遍历的元素(柱子)高度大于栈顶元素的高度,此时就出现凹槽了,如图所示:

取栈顶元素,将栈顶元素弹出,这个就是凹槽的底部,也就是中间位置,下标记为mid,对应的高度为height[mid](就是图中的高度1)。

此时的栈顶元素st.top(),就是凹槽的左边位置,下标为st.top(),对应的高度为height[st.top()](就是图中的高度2)。

当前遍历的元素i,就是凹槽右边的位置,下标为i,对应的高度为height[i](就是图中的高度3)。

此时可以发现其实就是栈顶和栈顶的下一个元素以及要入栈的元素,三个元素来接水!

那么雨水高度是 min(凹槽左边高度, 凹槽右边高度) - 凹槽底部高度,代码为:int h = min(height[st.top()], height[i]) - height[mid];

雨水的宽度是 凹槽右边的下标 - 凹槽左边的下标 - 1(因为只求中间宽度),代码为:int w = i - st.top() - 1 ;

当前凹槽雨水的体积就是:h * w

 

class Solution {
public:int trap(vector<int>& height) {stack<int> st; //存下标,计算柱子高度st.push(0);int sum = 0;for (int i = 1; i < height.size(); i++) {if (height[i] < height[st.top()]) {st.push(i);} else if (height[i] == height[st.top()]) {st.push(i);} else {while (!st.empty() && height[i] > height[st.top()]) {int mid = st.top();st.pop();if (!st.empty()) {int h = min(height[st.top()], height[i]) - height[mid];int w = i - st.top() - 1;sum += h * w;}}st.push(i);}}return sum;}
};