> 文章列表 > 小白学Pytorch系列--Torch.nn API Transformer Layers(9)

小白学Pytorch系列--Torch.nn API Transformer Layers(9)

小白学Pytorch系列--Torch.nn API Transformer Layers(9)

小白学Pytorch系列–Torch.nn API Transformer Layers(9)

小白学Pytorch系列--Torch.nn API Transformer Layers(9)

方法 注释
nn.Transformer Transformer模型。
nn.TransformerEncoder TransformerEncoder是N个编码器层的堆栈
nn.TransformerDecoder TransformerDecoder是N个解码器层的堆栈
nn.TransformerEncoderLayer TransformerEncoderLayer 由自注意网络和前馈网络组成。
nn.TransformerDecoderLayer TransformerDecoderLayer由自注意网络、多头注意网络和前馈网络组成。

解读参考: https://blog.csdn.net/qq_43645301/article/details/109279616

nn.Transformer

小白学Pytorch系列--Torch.nn API Transformer Layers(9)
小白学Pytorch系列--Torch.nn API Transformer Layers(9)
小白学Pytorch系列--Torch.nn API Transformer Layers(9)

>>> transformer_model = nn.Transformer(nhead=16, num_encoder_layers=12)
>>> src = torch.rand((10, 32, 512))
>>> tgt = torch.rand((20, 32, 512))
>>> out = transformer_model(src, tgt)
output = transformer_model(src, tgt, src_mask=src_mask, tgt_mask=tgt_mask)

nn.TransformerEncoder

TransformerEncoder是一个由N个编码器层组成的堆栈。用户可以构建BERT(https://arxiv.org/abs/1810.04805)具有相应参数的模型。
小白学Pytorch系列--Torch.nn API Transformer Layers(9)

>>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8)
>>> transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=6)
>>> src = torch.rand(10, 32, 512)
>>> out = transformer_encoder(src)

小白学Pytorch系列--Torch.nn API Transformer Layers(9)

nn.TransformerDecoder

小白学Pytorch系列--Torch.nn API Transformer Layers(9)
小白学Pytorch系列--Torch.nn API Transformer Layers(9)

>>> decoder_layer = nn.TransformerDecoderLayer(d_model=512, nhead=8)
>>> transformer_decoder = nn.TransformerDecoder(decoder_layer, num_layers=6)
>>> memory = torch.rand(10, 32, 512)
>>> tgt = torch.rand(20, 32, 512)
>>> out = transformer_decoder(tgt, memory)

nn.TransformerEncoderLayer

TransformerEncoderLayer由自注意网络和前馈网络组成。这个标准编码器层是基于“Attention Is All You Need”,用户可以在应用过程中以不同的方式修改或实现。
小白学Pytorch系列--Torch.nn API Transformer Layers(9)
小白学Pytorch系列--Torch.nn API Transformer Layers(9)
小白学Pytorch系列--Torch.nn API Transformer Layers(9)
小白学Pytorch系列--Torch.nn API Transformer Layers(9)

>>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8, batch_first=True)
>>> src = torch.rand(32, 10, 512)
>>> out = encoder_layer(src)>>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8, batch_first=True)
>>> src = torch.rand(32, 10, 512)
>>> out = encoder_layer(src)

nn.TransformerDecoderLayer

小白学Pytorch系列--Torch.nn API Transformer Layers(9)
小白学Pytorch系列--Torch.nn API Transformer Layers(9)

>>> decoder_layer = nn.TransformerDecoderLayer(d_model=512, nhead=8)
>>> memory = torch.rand(10, 32, 512)
>>> tgt = torch.rand(20, 32, 512)
>>> out = decoder_layer(tgt, memory)>>> decoder_layer = nn.TransformerDecoderLayer(d_model=512, nhead=8, batch_first=True)
>>> memory = torch.rand(32, 10, 512)
>>> tgt = torch.rand(32, 20, 512)
>>> out = decoder_layer(tgt, memory)