> 文章列表 > 树的遍历方式(前中后,层序遍历,递归,迭代,Morris遍历)-----直接查询代码

树的遍历方式(前中后,层序遍历,递归,迭代,Morris遍历)-----直接查询代码

树的遍历方式(前中后,层序遍历,递归,迭代,Morris遍历)-----直接查询代码

目录

一.前序遍历

1.递归

2.栈迭代

3.Morris遍历

二.中序遍历

1.递归

2.栈迭代

3.Morris遍历

三.后序遍历

1.递归

2.栈迭代

3.Morris遍历

四.前中后序的统一迭代法

1.前序遍历

2.中序遍历

3.后序遍历

五.层序遍历

1.队列迭代

2.之字形层序遍历

3.锯齿形层序遍历


一.前序遍历

1.递归

    ArrayList<Integer> list = new ArrayList<>();public List<Integer> preorderTraversal(TreeNode root) {preOrder(root);return list;}public void preOrder(TreeNode root) {if (root != null) {list.add(root.val);preOrder(root.left);preOrder(root.right);}}

2.栈迭代

在进行使用栈进行迭代的时候,我们是先入栈右节点,然后入栈左节点,这样做是和栈的结构进行匹配的,因为栈是先进后出的结构,所以先入栈右节点,再入栈左节点,这样出栈的时候左节点才能先出栈

第一次:先入栈1,stack={1}

第二次:然后出栈1,入栈1的右节点3,stack={3},入栈1的左节点2 stack={3,2}

第三次:出栈顶元素2,stack={3},入栈2的右节点,入栈2的左节点.stack={3,5,4}

第四次,出栈顶元素4,stack={3,5},入栈4的左节点6,stack={3,5,6};

第五次:出栈顶元素6,左右结点都为空,没有元素入栈,stack={3,5};

第六次:出栈顶元素5,入栈5的右节点7,stack={3,7};

第七次:出栈顶元素7,,没有元素入栈,stack={3};

第八次,出栈顶元素3,没有元素入栈,stack={};迭代结束

   //入栈顺序为,中-->右-->左public static List<Integer> preorderTraversal(TreeNode root) {LinkedList<TreeNode> stack = new LinkedList<>();List<Integer> res = new ArrayList<>();if (root == null) {return res;}stack.push(root);while (!stack.isEmpty()) {TreeNode pop = stack.pop();res.add(pop.val);if (pop.right != null) {stack.push(pop.right);}if (pop.left != null) {stack.push(pop.left);}}return res;}

3.Morris遍历

Morris遍历利用了树的线索化,时间复杂度为O(n)空间复杂度为O(1),主要节省了空间,时间复杂度还是不变,具体的分析请看这篇文章:树的前中后序的Morris遍历_允歆辰丶的博客-CSDN博客,这里直接给出代码:

    public List<Integer> preorderTraversal(TreeNode root) {List<Integer> res = new ArrayList<>();TreeNode curr = root;while (curr != null) {if (curr.left == null) { // 左子树为空,则输出当前节点,然后遍历右子树res.add(curr.val);//如果要求直接打印,直接输出System.out.println(curr.val);curr = curr.right;} else {// 找到当前节点的前驱节点TreeNode prev = curr.left;while (prev.right != null && prev.right != curr) {prev = prev.right;}if (prev.right == null) {res.add(curr.val);//如果要求直接打印,直接输出System.out.println(curr.val);// 将前驱节点的右子树连接到当前节点prev.right = curr;curr = curr.left;} else {// 前驱节点的右子树已经连接到当前节点,断开连接,输出当前节点,然后遍历右子树prev.right = null;curr = curr.right;}}}return res;}

二.中序遍历

1.递归

    ArrayList<Integer> list = new ArrayList<>();public List<Integer> inorderTraversal(TreeNode root) {infixOrder(root);return list;}public void infixOrder(TreeNode root) {if (root != null) {infixOrder(root.left);list.add(root.val);infixOrder(root.right);}}

2.栈迭代

中序遍历使用栈迭代还是有一定的难度的.我们可以想一下,前序遍历先遍历的根,栈可以压入根结点,然后再出栈,而中序遍历的话,需要找到最左边的结点,然后才能出栈.这个时候我们可以设置一个cur结点,当cur结点为空的时候出栈出栈,也就是找到了最左端的结点,当cur==null的时候,进行出栈处理,然后开始访问cur的右节点.这样就可以实现中序遍历.

    //入栈顺序: 左-右public static List<Integer> inorderTraversal(TreeNode root) {List<Integer> res = new ArrayList<>();if (root == null) {return res;}LinkedList<TreeNode> stack = new LinkedList<>();TreeNode cur = root;while (cur != null || !stack.isEmpty()) {if (cur != null) {//cur不为空,说明没有遍历到最左端的叶子结点,也就是第一个输出的结点stack.push(cur);cur = cur.left;} else {cur = stack.pop();res.add(cur.val);cur = cur.right;}}return res;}

3.Morris遍历

 具体的分析请看这篇文章:树的前中后序的Morris遍历_允歆辰丶的博客-CSDN博客,这里直接给出代码:

public class InorderThreadedBinaryTree {private ThreadTreeNode pre = null;public void threadedNodes(ThreadTreeNode node) {//如果node==null,不能线索化if (node == null) {return;}//1、先线索化左子树threadedNodes(node.left);//2、线索化当前结点//处理当前结点的前驱结点//以8为例来理解//8结点的.left = null,8结点的.leftType = 1if (node.left == null) {//让当前结点的左指针指向前驱结点node.left = pre;//修改当前结点的左指针的类型,指向前驱结点node.leftType = 1;}//处理后继结点if (pre != null && pre.right == null) {//让当前结点的右指针指向当前结点pre.right = node;//修改当前结点的右指针的类型=pre.rightType = 1;}//每处理一个结点后,让当前结点是下一个结点的前驱结点pre = node;//3、线索化右子树threadedNodes(node.right);}}class ThreadTreeNode {int val;ThreadTreeNode left;//0为非线索化,1为线索化int leftType;ThreadTreeNode right;//0为非线索化,1为线索化int rightType;public ThreadTreeNode(int val) {this.val = val;}
}

三.后序遍历

1.递归

    ArrayList<Integer> list = new ArrayList<>();public List<Integer> postorderTraversal(TreeNode root) {postOrder(root);return list;}public void postOrder(TreeNode root) {if (root != null) {postOrder(root.left);postOrder(root.right);list.add(root.val);}}

2.栈迭代

后序遍历可以思考一下前序遍历的迭代代码,后序遍历的遍历顺序为左-->右-->中,我们入栈的顺序为中-->左-->右,然后出栈的顺序为中-->右-->左,这样在最后的时候反转一下,便可以正好符合了后序遍历的顺序了.

    入栈顺序:中-->左-->右 出栈顺序:中-->右-->左public List<Integer> postorderTraversal(TreeNode root) {List<Integer> res = new ArrayList<>();if (root == null) {return res;}LinkedList<TreeNode> stack = new LinkedList<>();stack.push(root);while (!stack.isEmpty()) {TreeNode node = stack.pop();res.add(node.val);if (node.left != null) {stack.push(node.left);}if (node.right != null) {stack.push(node.right);}}Collections.reverse(res);return res;}

3.Morris遍历

 具体的分析请看这篇文章:树的前中后序的Morris遍历_允歆辰丶的博客-CSDN博客,这里直接给出代码:

    public List<Integer> postorderTraversal(TreeNode root) {List<Integer> res = new ArrayList<>();TreeNode dump = new TreeNode(0);//建立一个临时结点dump.left = root;  //设置dump的左节点为rootTreeNode curr = dump;  //当前节点为dumpwhile (curr != null) {if (curr.left == null) { // 左子树为空,则输出当前节点,然后遍历右子树curr = curr.right;} else {// 找到当前节点的前驱节点TreeNode prev = curr.left;while (prev.right != null && prev.right != curr) {prev = prev.right;}if (prev.right == null) {// 将前驱节点的右子树连接到当前节点prev.right = curr;curr = curr.left;} else {reverseAddNodes(curr.left, prev, res);// 前驱节点的右子树已经连接到当前节点,断开连接,输出当前节点,然后遍历右子树prev.right = null;curr = curr.right;}}}return res;}private void reverseAddNodes(TreeNode begin, TreeNode end, List<Integer> res) {reverseNodes(begin, end); //将begin到end的进行逆序连接TreeNode curr = end;while (true) {//将逆序连接后端begin到end添加res.add(curr.val);if (curr == begin)break;curr = curr.right;}reverseNodes(end, begin);//恢复之前的连接状态}/* 将begin到end的进行逆序连接 @param begin* @param end*/private void reverseNodes(TreeNode begin, TreeNode end) {TreeNode prev = begin;TreeNode curr = prev.right;TreeNode post;while (prev != end) {post = curr.right;curr.right = prev;prev = curr;curr = post;}}

四.前中后序的统一迭代法

1.前序遍历

我们为了同时解决访问节点(遍历节点)和处理节点(将元素放进结果集)不一致的情况,我们加入标记节点null,当出栈的结点为为null的时候,我们将再次出栈的元素加入到res结合中,

因为栈的性质:先进后出,所以在加入到栈的时候,前序要遵循右-->左-->中(做标记加入null)的顺序加入到栈,然后出栈为null结点的时候,处理结点,将元素放进结果集.

    public static List<Integer> preorderTraversal(TreeNode root) {LinkedList<TreeNode> stack = new LinkedList<>();List<Integer> res = new ArrayList<>();if (root != null) {stack.push(root);}while (!stack.isEmpty()) {TreeNode node = stack.pop();if (node != null) {if (node.right != null)stack.push(node.right);  // 添加右节点(空节点不入栈)if (node.left != null)stack.push(node.left);    // 添加左节点(空节点不入栈)stack.push(node);                          // 添加中节点stack.push(null); // 中节点访问过,但是还没有处理,加入空节点做为标记。} else { // 只有遇到空节点的时候,才将下一个节点放进结果集node = stack.pop();    // 重新取出栈中元素res.add(node.val); // 加入到结果集}}return res;}

2.中序遍历

因为栈的性质:先进后出,所以在加入到栈的时候,前序要遵循右-->中(做标记加入null)-->左的顺序加入到栈,然后出栈为null结点的时候,处理结点,将元素放进结果集.

    public List<Integer> inorderTraversal(TreeNode root) {List<Integer> res = new LinkedList<>();LinkedList<TreeNode> stack = new LinkedList<>();if (root != null)stack.push(root);while (!stack.isEmpty()) {TreeNode node = stack.pop();if (node != null) {if (node.right != null)stack.push(node.right);  // 添加右节点(空节点不入栈)stack.push(node);                          // 添加中节点stack.push(null); // 中节点访问过,但是还没有处理,加入空节点做为标记。if (node.left != null)stack.push(node.left);    // 添加左节点(空节点不入栈)} else { // 只有遇到空节点的时候,才将下一个节点放进结果集node = stack.pop();    // 取出栈中元素res.add(node.val); // 加入到结果集}}return res;}

3.后序遍历

因为栈的性质:先进后出,所以在加入到栈的时候,前序要遵循中(做标记加入null)-->右-->左的顺序加入到栈,然后出栈为null结点的时候,处理结点,将元素放进结果集.

    public List<Integer> postorderTraversal(TreeNode root) {List<Integer> res = new LinkedList<>();LinkedList<TreeNode> stack = new LinkedList<>();if (root != null)stack.push(root);while (!stack.isEmpty()) {TreeNode node = stack.pop();if (node != null) {stack.push(node);                          // 添加中节点stack.push(null); // 中节点访问过,但是还没有处理,加入空节点做为标记。if (node.right != null)stack.push(node.right);  // 添加右节点(空节点不入栈)if (node.left != null)stack.push(node.left);    // 添加左节点(空节点不入栈)} else { // 只有遇到空节点的时候,才将下一个节点放进结果集node = stack.pop();    // 重新取出栈中元素res.add(node.val); // 加入到结果集}}return res;}

五.层序遍历

1.队列迭代

层序遍历主要是利用了队列先进后出的性质,每一次的循环次数为为当前层的结点的个数,在遍历的当前层的结点的同时,如果左右孩子不为空的话,入队当前结点的左右孩子结点,直到队列里面没有元素.例如:

第一次先根结点入队列:queue={1};

第二次:1结点出队列,然后将1的左右节点2结点和3结点入队列,queue={2,3};

第三次:2结点出队列,4和5结点入队列,3出队列,3无左右节点,queue={4,5};

第四次:4结点出队列,4的左节点入队列,5结点出队列,5的右节点入队列,queue={6,7}

第五次,6,7结点出队列,因为他们都没有左右节点,因此queue=null,遍历结束

    public List<List<Integer>> levelOrder(TreeNode root) {List<List<Integer>> list = new ArrayList<>();if (root == null)return list;LinkedList<TreeNode> queue = new LinkedList<>();queue.offer(root);while (!queue.isEmpty()) {int size = queue.size();List<Integer> res = new ArrayList<>();for (int i = 0; i < size; ++i) {TreeNode node = queue.poll();res.add(node.val);if (node.left != null)queue.offer(node.left);if (node.right != null)queue.offer(node.right);}list.add(res);}return list;}

2.之字形层序遍历

用两个栈实现之字形(Z字形)打印,如下图的遍历顺序,一个栈是正向存储每层的元素,一个栈逆向存储每层的元素,当然也可以使用一个队列完成

    public static List<Integer> zprintf(TreeNode root) {LinkedList<TreeNode> stack1 = new LinkedList<>();LinkedList<TreeNode> stack2 = new LinkedList<>();ArrayList<Integer> list = new ArrayList<>();boolean flag = false;if (root != null)stack1.push(root);while (!stack2.isEmpty() || !stack1.isEmpty()) {if (!flag) {TreeNode node = stack1.pop();list.add(node.val);if (node.left != null)stack2.push(node.left);if (node.right != null)stack2.push(node.right);if (stack1.isEmpty()) {flag = true;}} else {TreeNode node = stack2.pop();list.add(node.val);if (node.right != null)stack1.push(node.right);if (node.left != null)stack1.push(node.left);if (stack2.isEmpty()) {flag = false;}}}return list;}

3.锯齿形层序遍历

力扣:力扣

  • 如果从左至右,我们每次将被遍历到的元素插入至双端队列的末尾。

  • 如果从右至左,我们每次将被遍历到的元素插入至双端队列的头部。

    public List<List<Integer>> zigzagLevelOrder(TreeNode root) {List<List<Integer>> ans = new ArrayList<>();LinkedList<TreeNode> queue = new LinkedList<>();boolean isOrderLeft = true;if (root == null)return ans;queue.push(root);while (!queue.isEmpty()) {LinkedList<Integer> levelList = new LinkedList<>();int size = queue.size();for (int i = 0; i < size; ++i) {TreeNode node = queue.poll();if(isOrderLeft){levelList.offer(node.val);}else {levelList.push(node.val);}if (node.left != null) {queue.offer(node.left);}if (node.right != null) {queue.offer(node.right);}}ans.add(levelList);isOrderLeft = !isOrderLeft;}return ans;}