Integration using Feynman technique
求解积分:
∫ − ∞ + ∞ e − x 2 sin 2 ( x 2 ) x 2 d x \\int_{-\\infty}^{+\\infty}\\frac{e^{-x^{2}}\\sin^{2}\\left(x^{2}\\right)}{x^{2}}\\mathrm{d}x ∫−∞+∞x2e−x2sin2(x2)dx
解:
令:
I = ∫ − ∞ + ∞ e − x 2 sin 2 ( x 2 ) x 2 d x I=\\int_{-\\infty}^{+\\infty}\\frac{e^{-x^{2}}\\sin^{2}\\left(x^{2}\\right)}{x^{2}}\\mathrm{d}x I=∫−∞+∞x2e−x2sin2(x2)dx
由于是偶函数,所以:
I = 2 ∫ 0 + ∞ e − x 2 sin 2 ( x 2 ) x 2 d x I=2\\int_{0}^{+\\infty}\\frac{e^{-x^{2}}\\sin^{2}\\left(x^{2}\\right)}{x^{2}}\\mathrm{d}x I=2∫0+∞x2e−x2sin2(x2)dx
下面使用一个小技巧,即通过添加参数 t t t 拓展上述积分:
I ( t ) = 2 ∫ 0 + ∞ e − x 2 sin 2 ( t x 2 ) x 2 d x I(t)=2\\int_{0}^{+\\infty}\\frac{e^{-x^{2}}\\sin^{2}\\left(tx^{2}\\right)}{x^{2}}\\mathrm{d}x I(t)=2∫0+∞x2e−x2sin2(tx2)dx
然后对上式等号左右进行微分:
d d t I ( t ) = d d t 2 ∫ 0 + ∞ e − x 2 sin 2 ( t x 2 ) x 2 d x = 2 ∫ 0 + ∞ ∂ ∂ t e − x 2 sin 2 ( t x 2 ) x 2 d x = 2 ∫ 0 + ∞ e − x 2 x 2 2 sin ( t x 2 ) cos ( t x 2 ) x 2 d x = 4 ∫ 0 + ∞ e − x 2 sin ( t x 2 ) cos ( t x 2 ) d x = 4 ∫ 0 + ∞ e − x 2 sin ( 2 t x 2 ) d x \\begin{aligned} \\frac{\\mathrm{d}}{\\mathrm{d}t}I(t)&=\\frac{\\mathrm{d}}{\\mathrm{d}t}2\\int_{0}^{+\\infty}\\frac{e^{-x^{2}}\\sin^{2}\\left(tx^{2}\\right)}{x^{2}}\\mathrm{d}x\\\\ &=2\\int_{0}^{+\\infty}\\frac{\\partial}{\\partial t}\\frac{e^{-x^{2}}\\sin^{2}\\left(tx^{2}\\right)}{x^{2}}\\mathrm{d}x\\\\ &=2\\int_{0}^{+\\infty}\\frac{e^{-x^{2}}}{x^{2}}2\\sin\\left(tx^{2}\\right)\\cos\\left(tx^{2}\\right)x^{2}\\mathrm{d}x\\\\ &=4\\int_{0}^{+\\infty}e^{-x^{2}}\\sin\\left(tx^{2}\\right)\\cos\\left(tx^{2}\\right)\\mathrm{d}x\\\\ &=4\\int_{0}^{+\\infty}e^{-x^{2}}\\sin\\left(2tx^{2}\\right)\\mathrm{d}x\\\\ \\end{aligned} dtdI(t)=dtd2∫0+∞x2e−x2sin2(tx2)dx=2∫0+∞∂t∂x2e−x2sin2(tx2)dx=2∫0+∞x2e−x22sin(tx2)cos(tx2)x2dx=4∫0+∞e−x2sin(tx2)cos(tx2)dx=4∫0+∞e−x2sin(2tx2)dx
由于:
e i x = cos x + i sin x e^{\\mathrm{i}x}=\\cos x+\\mathrm{i}\\sin x eix=cosx+isinx
所以:
I m [ e 2 i t x 2 ] = sin ( 2 t x 2 ) \\mathrm{Im}\\left[e^{2\\mathrm{i}tx^{2}}\\right]=\\sin\\left(2tx^{2}\\right) Im[e2itx2]=sin(2tx2)
代入积分方程中:
I ′ ( t ) = I m [ 4 ∫ 0 + ∞ e − x 2 e 2 i t x 2 d x ] = I m [ 4 ∫ 0 + ∞ e − x 2 ( 1 − 2 i t ) d x ] \\begin{aligned} I'(t) &=\\mathrm{Im}\\left[4\\int_{0}^{+\\infty}e^{-x^{2}}e^{2\\mathrm{i}tx^{2}}\\mathrm{d}x\\right]\\\\ &=\\mathrm{Im}\\left[4\\int_{0}^{+\\infty}e^{-x^{2}(1-2\\mathrm{i}t)}\\mathrm{d}x\\right]\\\\ \\end{aligned} I′(t)=Im[4∫0+∞e−x2e2itx2dx]=Im[4∫0+∞e−x2(1−2it)dx]
考虑到:
∫ 0 + ∞ e − α x 2 d x = 1 2 π α \\int_{0}^{+\\infty}e^{-\\alpha x^{2}}\\mathrm{d}x=\\frac{1}{2}\\sqrt{\\frac{\\pi}{\\alpha}} ∫0+∞e−αx2dx=21απ
代入到前式中:
I ′ ( t ) = 2 π I m [ 1 1 − 2 i t ] \\begin{aligned} I'(t) &=2\\sqrt{\\pi}\\mathrm{Im}\\left[\\frac{1}{\\sqrt{1-2\\mathrm{i}t}}\\right]\\\\ \\end{aligned} I′(t)=2πIm[1−2it1]
将上式等号两端积分:
∫ 0 + ∞ d d t I ( t ) d t = I ( t ) = 2 π I m [ ∫ 0 + ∞ ( 1 − 2 i t ) − 1 / 2 d t ] = 2 π I m [ ( 1 − 2 i t ) 1 / 2 1 2 ( − 2 i ) + C ] = 2 π I m [ i ( 1 − 2 i t ) 1 / 2 ] + C \\begin{aligned} \\int_{0}^{+\\infty}\\frac{\\mathrm{d}}{\\mathrm{d}t}I(t)\\mathrm{d}t &=I(t)\\\\ &=2\\sqrt{\\pi}\\mathrm{Im}\\left[\\int_{0}^{+\\infty}\\left(1-2\\mathrm{i}t\\right)^{-1/2}\\mathrm{d}t\\right]\\\\ &=2\\sqrt{\\pi}\\mathrm{Im}\\left[\\frac{(1-2\\mathrm{i}t)^{1/2}}{\\frac{1}{2}(-2\\mathrm{i})}+C\\right]\\\\ &=2\\sqrt{\\pi}\\mathrm{Im}\\left[\\mathrm{i}(1-2\\mathrm{i}t)^{1/2}\\right]+C\\\\ \\end{aligned} ∫0+∞dtdI(t)dt=I(t)=2πIm[∫0+∞(1−2it)−1/2dt]=2πIm[21(−2i)(1−2it)1/2+C]=2πIm[i(1−2it)1/2]+C
考虑到:
I ( t ) = 2 ∫ 0 + ∞ e − x 2 sin 2 ( t x 2 ) x 2 d x I(t)=2\\int_{0}^{+\\infty}\\frac{e^{-x^{2}}\\sin^{2}\\left(tx^{2}\\right)}{x^{2}}\\mathrm{d}x I(t)=2∫0+∞x2e−x2sin2(tx2)dx
此时,令 t = 0 t=0 t=0,
I ( t = 0 ) = 0 I(t=0)=0 I(t=0)=0
则前式的结果:
I ( t = 0 ) = 0 = 2 π I m [ i ( 1 − 2 i t ) 1 / 2 ] + C = 2 π I m [ i ] + C = 2 π + C \\begin{aligned} I(t=0) &=0\\\\ &=2\\sqrt{\\pi}\\mathrm{Im}\\left[\\mathrm{i}(1-2\\mathrm{i}t)^{1/2}\\right]+C\\\\ &=2\\sqrt{\\pi}\\mathrm{Im}\\left[\\mathrm{i}\\right]+C\\\\ &=2\\sqrt{\\pi}+C\\\\ \\end{aligned} I(t=0)=0=2πIm[i(1−2it)1/2]+C=2πIm[i]+C=2π+C
由上得出:
C = − 2 π C=-2\\sqrt{\\pi} C=−2π
则最初需要解决的积分:
I ( t = 1 ) = ∫ − ∞ + ∞ e − x 2 sin 2 ( x 2 ) x 2 d x = 2 π I m [ i ( 1 − 2 i ) 1 / 2 ] − 2 π \\begin{aligned} I(t=1) &=\\int_{-\\infty}^{+\\infty}\\frac{e^{-x^{2}}\\sin^{2}\\left(x^{2}\\right)}{x^{2}}\\mathrm{d}x\\\\ &=2\\sqrt{\\pi}\\mathrm{Im}\\left[\\mathrm{i}(1-2\\mathrm{i})^{1/2}\\right]-2\\sqrt{\\pi}\\\\ \\end{aligned} I(t=1)=∫−∞+∞x2e−x2sin2(x2)dx=2πIm[i(1−2i)1/2]−2π
设:
z = 1 − 2 i z=1-2\\mathrm{i} z=1−2i
则:
∣ z ∣ = 1 2 + 2 2 = 5 A r g z = tan − 1 ( − 2 1 ) = − tan − 1 ( 2 ) \\left|z\\right|=\\sqrt{1^{2}+2^{2}}=\\sqrt{5}\\\\ \\mathrm{Arg}\\ z=\\tan^{-1}\\left(\\frac{-2}{1}\\right)=-\\tan^{-1}(2) ∣z∣=12+22=5Arg z=tan−1(1−2)=−tan−1(2)
所以:
z = 1 − 2 i = 5 e − i tan − 1 ( 2 ) z=1-2\\mathrm{i}=\\sqrt{5}e^{-\\mathrm{i}\\tan^{-1}(2)} z=1−2i=5e−itan−1(2)
所以:
1 − 2 i = 5 e − i tan − 1 ( 2 ) 2 \\sqrt{1-2\\mathrm{i}}=\\sqrt{\\sqrt{5}}e^{-\\mathrm{i}\\frac{\\tan^{-1}(2)}{2}} 1−2i=5e−i2tan−1(2)
所以:
I m [ i 1 − 2 i ] = I m [ i 5 e − i tan − 1 ( 2 ) 2 ] = 5 cos ( tan − 1 ( 2 ) 2 ) \\begin{aligned} \\mathrm{Im}\\left[ \\mathrm{i}\\sqrt{1-2\\mathrm{i}}\\right] &=\\mathrm{Im}\\left[ \\mathrm{i}\\sqrt{\\sqrt{5}}e^{-\\mathrm{i}\\frac{\\tan^{-1}(2)}{2}}\\right]\\\\ &=\\sqrt{\\sqrt{5}}\\cos\\left(\\frac{\\tan^{-1}(2)}{2}\\right) \\end{aligned} Im[i1−2i]=Im[i5e−i2tan−1(2)]=5cos(2tan−1(2))
所以:
I ( 1 ) = 2 π 5 cos ( tan − 1 ( 2 ) 2 ) − 2 π = 2 π 5 1 + 5 2 5 − 2 π = 2 π 1 + 5 2 − 2 π = 2 π ( 1 + 5 2 − 1 ) \\begin{aligned} I(1) &=2\\sqrt{\\pi}\\sqrt{\\sqrt{5}}\\cos\\left(\\frac{\\tan^{-1}(2)}{2}\\right)-2\\sqrt{\\pi}\\\\ &=2\\sqrt{\\pi}\\sqrt{\\sqrt{5}}\\sqrt{\\frac{1+\\sqrt{5}}{2\\sqrt{5}}}-2\\sqrt{\\pi}\\\\ &=2\\sqrt{\\pi}\\sqrt{\\frac{1+\\sqrt{5}}{2}}-2\\sqrt{\\pi}\\\\ &=2\\sqrt{\\pi}\\left(\\sqrt{\\frac{1+\\sqrt{5}}{2}}-1\\right)\\\\ \\end{aligned} I(1)=2π5cos(2tan−1(2))−2π=2π5251+5−2π=2π21+5−2π=2π 21+5−1
- 参考文献
A beautiful calculus result: solution using Feynman’s technique