> 文章列表 > 【C++修炼之路】25.哈希应用--布隆过滤器

【C++修炼之路】25.哈希应用--布隆过滤器

【C++修炼之路】25.哈希应用--布隆过滤器

【C++修炼之路】25.哈希应用--布隆过滤器
每一个不曾起舞的日子都是对生命的辜负

布隆过滤器

  • 前言
  • 一.布隆过滤器提出
  • 二.布隆过滤器概念
  • 三. 布隆过滤器的操作
    • 3.1 布隆过滤器的插入
    • 3.2 布隆过滤器的查找
    • 3.3 布隆过滤器的删除
  • 四.布隆过滤器的代码
    • 4.1 HashFunc的仿函数参考
    • 4.2 BloomFilter.h
  • 五.布隆过滤器的优缺点
  • 六.布隆过滤器的应用场景

前言

上一节中,我们学到了位图,可以看出位图有如下优点:1.节省空间。2.快。

但相对的,位图同样有缺点存在:1. 一般要求范围相对集中,如果范围特别分散,空间消耗就会上升。2. 只能针对整形

那如果此时是字符串类型,能不能通过位图的思想来确定字符串在不在呢?

一.布隆过滤器提出

我们在使用新闻客户端看新闻时,它会给我们不停地推荐新的内容,它每次推荐时要去重,去掉那些已经看过的内容。问题来了,新闻客户端推荐系统如何实现推送去重的? 用服务器记录了用户看过的所有历史记录,当推荐系统推荐新闻时会从每个用户的历史记录里进行筛选,过滤掉那些已经存在的记录。 如何快速查找呢?

  1. 用哈希表存储用户记录,缺点:浪费空间
  2. 用位图存储用户记录,缺点:位图一般只能处理整形,如果内容编号是字符串,就无法处理了。
  3. 将哈希与位图结合,即布隆过滤器

即通过位图的方式确定字符串在还是不在,我们可以采用HashFunc将字符串转换成整形映射到位图中,这就是布隆过滤器。

二.布隆过滤器概念

布隆过滤器是由布隆(Burton Howard Bloom)在1970年提出的 一种紧凑型的、比较巧妙的概率型数据结构,特点是高效地插入和查询,可以用来告诉你 “某样东西一定不存在或者可能存在”,它是用多个哈希函数,将一个数据映射到位图结构中。此种方式不仅可以提升查询效率,也可以节省大量的内存空间。

但实际上这种布隆过滤器的方式可能会产生误判:

  1. 在是不一定准确的。(hashFunc映射冲突)
  2. 不在一定是准确的。

可能存在是因为映射可能出现重复,即产生冲突,这是布隆过滤器无法避免的,但是可以通过增加HashFunc的映射次数从而降低冲突引起的误判率。

【C++修炼之路】25.哈希应用--布隆过滤器

如图,映射之后,当查找时,如果三个映射值都不为0,那么可以大概认为这个变量是存在的。(映射越多,越准确)当然映射越多的话,同样会浪费空间,因此需要根据需求设计HashFunc的个数。

如何选择哈希函数个数和布隆过滤器长度

很显然,过小的布隆过滤器很快所有的 bit 位均为 1,那么查询任何值都会返回“可能存在”,起不到过滤的目的了。布隆过滤器的长度会直接影响误报率,布隆过滤器越长其误报率越小。

另外,哈希函数的个数也需要权衡,个数越多则布隆过滤器 bit 位置位 1 的速度越快,且布隆过滤器的效率越低;但是如果太少的话,那我们的误报率会变高。

k 为哈希函数个数,m 为布隆过滤器长度,n 为插入的元素个数,p 为误报率

【C++修炼之路】25.哈希应用--布隆过滤器

如何选择适合业务的 k 和 m 值呢,这里直接贴一个公式:k=m∗ln2/nk = m*ln2 / nk=mln2/n

可以看出,当k=3时,m≈4.2*n。因此,下面代码中我们采用5*N大小的布隆过滤器长度无疑是非常合适的。

三. 布隆过滤器的操作

上述虽然将大致的思路提到,但还是需要具体描述一下步骤

3.1 布隆过滤器的插入

【C++修炼之路】25.哈希应用--布隆过滤器

向布隆过滤器中插入:“baidu”

【C++修炼之路】25.哈希应用--布隆过滤器

【C++修炼之路】25.哈希应用--布隆过滤器

此过程就需要用到指定的HashFunc了。

3.2 布隆过滤器的查找

布隆过滤器的思想是将一个元素用多个哈希函数映射到一个位图中,因此被映射到的位置的比特位一定为1。所以可以按照以下方式进行查找:分别计算每个哈希值对应的比特位置存储的是否为零,只要有一个为零,代表该元素一定不在哈希表中,否则可能在哈希表中。
注意:布隆过滤器如果说某个元素不存在时,该元素一定不存在,如果该元素存在时,该元素可能存在,因为有些哈希函数存在一定的误判。
比如:在布隆过滤器中查找"alibaba"时,假设3个哈希函数计算的哈希值为:1、3、7,刚好和其他元素的比特位重叠,此时布隆过滤器告诉该元素存在,但实该元素是不存在的。

3.3 布隆过滤器的删除

布隆过滤器不能直接支持删除工作,因为在删除一个元素时,可能会影响其他元素。

比如:删除上图中"tencent"元素,如果直接将该元素所对应的二进制比特位置0,“baidu”元素也被删除了,因为这两个元素在多个哈希函数计算出的比特位上刚好有重叠。

一种支持删除的方法:将布隆过滤器中的每个比特位扩展成一个小的计数器,插入元素时给k个计数器(k个哈希函数计算出的哈希地址)加一,删除元素时,给k个计数器减一,通过多占用几倍存储空间的代价来增加删除操作。

缺陷:

  1. 无法确认元素是否真正在布隆过滤器中
  2. 存在计数回绕

四.布隆过滤器的代码

4.1 HashFunc的仿函数参考

各种字符串Hash函数 - clq - 博客园 (cnblogs.com)

我们没必要重复造轮子,因此直接采用上面链接的仿函数即可,有评分高的选高的,有需要就稍微改一下参数类型即可。

4.2 BloomFilter.h

#pragma once
#include<bitset>//设置的仿函数
struct BKDRHash
{size_t operator()(const string& key){size_t hash = 0;for (auto ch : key){hash *= 131;hash += ch;}return hash;}
};struct APHash
{size_t operator()(const string& key){unsigned int hash = 0;int i = 0;for (auto ch : key){if ((i & 1) == 0){hash ^= ((hash << 7) ^ (ch) ^ (hash >> 3));}else{hash ^= (~((hash << 11) ^ (ch) ^ (hash >> 5)));}i++;}return hash;}
};struct DJBHash
{size_t operator()(const string& key){unsigned int hash = 5381;for (auto ch : key){hash += (hash >> 5) + ch;}return hash;}
};template<size_t N,size_t X = 5,class K = string,class HashFunc1 = BKDRHash,class HashFunc2 = APHash,class HashFunc3 = DJBHash>class BloomFilter
{
public:void set(const K& key){size_t hash1 = HashFunc1()(key) % (X * N);size_t hash2 = HashFunc2()(key) % (X * N);size_t hash3 = HashFunc3()(key) % (X * N);_bs.set(hash1);_bs.set(hash2);_bs.set(hash3);}bool test(const K& key){size_t hash1 = HashFunc1()(key) % (X * N);if (!_bs.test(hash1))//如果不在,没必要往后走了{return false;//不存在误判}size_t hash2 = HashFunc2()(key) % (X * N);if (!_bs.test(hash2))//如果不在,没必要往后走了{return false;//不存在误判}size_t hash3 = HashFunc3()(key) % (X * N);if (!_bs.test(hash3))//如果不在,没必要往后走了{return false;//不存在误判}return true;//可能存在误判}
private:std::bitset<N * X> _bs;};

通过大量的数据可以判断冲突率:

void test_bloomfilter2()
{srand(time(0));const size_t N = 100000;BloomFilter<N> bf;std::vector<std::string> v1;std::string url = "https://www.cnblogs.com/-clq/archive/2012/05/31/2528153.html";for (size_t i = 0; i < N; ++i){v1.push_back(url + std::to_string(i));}for (auto& str : v1){bf.set(str);}// v2跟v1是相似字符串集,但是不一样std::vector<std::string> v2;for (size_t i = 0; i < N; ++i){std::string url = "https://www.cnblogs.com/-clq/archive/2012/05/31/2528153.html";url += std::to_string(999999 + i);v2.push_back(url);}size_t n2 = 0;for (auto& str : v2){if (bf.test(str)){++n2;}}cout << "相似字符串误判率:" << (double)n2 / (double)N << endl;// 不相似字符串集std::vector<std::string> v3;for (size_t i = 0; i < N; ++i){string url = "zhihu.com";url += std::to_string(i + rand());v3.push_back(url);}size_t n3 = 0;for (auto& str : v3){if (bf.test(str)){++n3;}}cout << "不相似字符串误判率:" << (double)n3 / (double)N << endl;
}

【C++修炼之路】25.哈希应用--布隆过滤器

通过控制X,X越大,空间就越大,越不易产生冲突,误判率越低。当然,增加HashFunc也可以降低误判率。

五.布隆过滤器的优缺点

优点:

  1. 增加和查询元素的时间复杂度为:O(K), (K为哈希函数的个数,一般比较小),与数据量大小无关

  2. 哈希函数相互之间没有关系,方便硬件并行运算

  3. 布隆过滤器不需要存储元素本身,在某些对保密要求比较严格的场合有很大优势

  4. 在能够承受一定的误判时,布隆过滤器比其他数据结构有这很大的空间优势

  5. 数据量很大时,布隆过滤器可以表示全集,其他数据结构不能

  6. 使用同一组散列函数的布隆过滤器可以进行交、并、差运算

缺点:

  1. 有误判率,即存在假阳性(False Position),即不能准确判断元素是否在集合中(补救方法:再
    建立一个白名单,存储可能会误判的数据)
  2. 不能获取元素本身
  3. 一般情况下不能从布隆过滤器中删除元素
  4. 如果采用计数方式删除,可能会存在计数回绕问题

六.布隆过滤器的应用场景

不需要一定准确的场景。注册时候的昵称判重。提高效率

【C++修炼之路】25.哈希应用--布隆过滤器

在客户端和数据库之间建立一个布隆过滤器,如果通过布隆的结果发现没有找到,那么一定不在,也就不用继续向数据库中查找了。如果在,那么就需要进数据库中一一查找,因为布隆对于找到的值是不一定存在的。所以通过布隆可以提高数据不在时查找的效率。