> 文章列表 > 比特数据结构与算法(第四章_下)二叉树OJ(力扣:144,965,104,226,100,572)

比特数据结构与算法(第四章_下)二叉树OJ(力扣:144,965,104,226,100,572)

比特数据结构与算法(第四章_下)二叉树OJ(力扣:144,965,104,226,100,572)

144. 二叉树的前序遍历

难度简单

给你二叉树的根节点 root ,返回它节点值的 前序 遍历。

示例 1:

输入:root = [1,null,2,3]

输出:[1,2,3]

示例 2:

输入:root = [ ]

输出:[ ]

示例 3:

输入:root = [1]

输出:[1]

示例 4:

输入:root = [1,2]

输出:[1,2]

示例 5:

输入:root = [1,null,2]

输出:[1,2]

提示:

  • 树中节点数目在范围 [0, 100] 内

  • -100 <= Node.val <= 100

进阶:递归算法很简单,你可以通过迭代算法完成吗?

/*** Definition for a binary tree node.* struct TreeNode {*     int val;*     struct TreeNode *left;*     struct TreeNode *right;* };*/
/*** Note: The returned array must be malloced, assume caller calls free().*/
int* preorderTraversal(struct TreeNode* root, int* returnSize){}

解析代码:

ps(迭代算法我们要学了C++之后的高阶数据结构再实现)

int TreeSize(struct TreeNode* root)
{if(root==NULL){return 0;}return 1 + TreeSize(root->left) + TreeSize(root->right);
}void _preorderTraversal(struct TreeNode* root,int* array,int* pi) // (函数前面的_代表这个函数的子函数)
{if(root==NULL){return;}array[(*pi)++] = root->val;_preorderTraversal(root->left,array,pi);_preorderTraversal(root->right,array,pi);
}int* preorderTraversal(struct TreeNode* root, int* returnSize){int size = TreeSize(root);int* array=(int*)malloc(sizeof(int)*size);int i = 0;_preorderTraversal(root,array,&i);*returnSize=size;return array;
}

(写完这题可以去写写二叉树的中序遍历和后序遍历,都是一样的)链接:

94. 二叉树的中序遍历

965. 单值二叉树

难度简单

如果二叉树每个节点都具有相同的值,那么该二叉树就是单值二叉树。

只有给定的树是单值二叉树时,才返回 true;否则返回 false。

示例 1:

比特数据结构与算法(第四章_下)二叉树OJ(力扣:144,965,104,226,100,572)

输入:[1,1,1,1,1,null,1]

输出:true

示例 2:

比特数据结构与算法(第四章_下)二叉树OJ(力扣:144,965,104,226,100,572)

输入:[2,2,2,5,2]

输出:false

提示:

  1. 给定树的节点数范围是 [1, 100]。

  1. 每个节点的值都是整数,范围为 [0, 99] 。

/*** Definition for a binary tree node.* struct TreeNode {*     int val;*     struct TreeNode *left;*     struct TreeNode *right;* };*/bool isUnivalTree(struct TreeNode* root){}

解析代码:

bool isUnivalTree(struct TreeNode* root) {if (root == NULL){return true;}if (root->left && root->val != root->left->val){return false;}if (root->right && root->val != root->right->val){return false;}return isUnivalTree(root->left) && isUnivalTree(root->right);
}

104. 二叉树的最大深度

难度简单

给定一个二叉树,找出其最大深度。

二叉树的深度为根节点到最远叶子节点的最长路径上的节点数。

说明: 叶子节点是指没有子节点的节点。

示例:

给定二叉树 [3,9,20,null,null,15,7],

3

/ \\

9 20

/ \\

15 7

返回它的最大深度 3 。

/*** Definition for a binary tree node.* struct TreeNode {*     int val;*     struct TreeNode *left;*     struct TreeNode *right;* };*/int maxDepth(struct TreeNode* root){}

解析代码:

/*int maxDepth(struct TreeNode* root) {if (root == NULL){return 0;}return maxDepth(root->left) > maxDepth(root->right) ? maxDepth(root->left) + 1 : maxDepth(root->right) + 1;
}*/  //这样写会有重复的递归计算,  优化:
int maxDepth(struct TreeNode* root) {if (root == NULL){return 0;}int leftDepth = maxDepth(root->left);int rightDepth = maxDepth(root->right);return leftDepth > rightDepth ? leftDepth + 1 : rightDepth + 1;
}

226. 翻转二叉树

难度简单

给你一棵二叉树的根节点 root ,翻转这棵二叉树,并返回其根节点。

示例 1:

输入:root = [4,2,7,1,3,6,9]

输出:[4,7,2,9,6,3,1]

示例 2:

输入:root = [2,1,3]

输出:[2,3,1]

示例 3:

输入:root = []

输出:[]

提示:

  • 树中节点数目范围在 [0, 100] 内

  • -100 <= Node.val <= 100

/*** Definition for a binary tree node.* struct TreeNode {*     int val;*     struct TreeNode *left;*     struct TreeNode *right;* };*/struct TreeNode* invertTree(struct TreeNode* root){}

解析代码(法一):

struct TreeNode* invertTree(struct TreeNode* root) {if (root == NULL){return NULL;}struct TreeNode* tmp = root->left;root->left = root->right;root->right = tmp;invertTree(root->left);invertTree(root->right);return root;
}

解析代码(法二):

struct TreeNode* invertTree(struct TreeNode* root) {if (root == NULL){return NULL;}struct TreeNode* rightTmp = root->right;root->right = invertTree(root->left);root->left = invertTree(rightTmp);return root;
}

100. 相同的树

难度简单

给你两棵二叉树的根节点 p 和 q ,编写一个函数来检验这两棵树是否相同。

如果两个树在结构上相同,并且节点具有相同的值,则认为它们是相同的。

示例 1:

输入:p = [1,2,3], q = [1,2,3]

输出:true

示例 2:

输入:p = [1,2], q = [1,null,2]

输出:false

示例 3:

输入:p = [1,2,1], q = [1,1,2]

输出:false

提示:

  • 两棵树上的节点数目都在范围 [0, 100] 内

  • -10^4 <= Node.val <= 10*4

/*** Definition for a binary tree node.* struct TreeNode {*     int val;*     struct TreeNode *left;*     struct TreeNode *right;* };*/bool isSameTree(struct TreeNode* p, struct TreeNode* q){}

解析代码:

bool isSameTree(struct TreeNode* p, struct TreeNode* q) {if (p == NULL && q == NULL){return true;}if (p == NULL || q == NULL)//其中一个为空,另一个不为空{return false;}if (p->val != q->val){return false;}return isSameTree(p->left, q->left)&& isSameTree(p->right, q->right);
}

572. 另一棵树的子树

难度简单

给你两棵二叉树 root 和 subRoot 。检验 root 中是否包含和 subRoot 具有相同结构和节点值的子树。如果存在,返回 true ;否则,返回 false 。

二叉树 tree 的一棵子树包括 tree 的某个节点和这个节点的所有后代节点。tree 也可以看做它自身的一棵子树。

示例 1:

输入:root = [3,4,5,1,2], subRoot = [4,1,2]

输出:true

示例 2:

输入:root = [3,4,5,1,2,null,null,null,null,0], subRoot = [4,1,2]

输出:false

提示:

  • root 树上的节点数量范围是 [1, 2000]

  • subRoot 树上的节点数量范围是 [1, 1000]

  • -10^4 <= root.val <= 10^4

  • -10^4 <= subRoot.val <= 10^4

/*** Definition for a binary tree node.* struct TreeNode {*     int val;*     struct TreeNode *left;*     struct TreeNode *right;* };*/bool isSubtree(struct TreeNode* root, struct TreeNode* subRoot) {}

解析代码:

bool isSameTree(struct TreeNode* p, struct TreeNode* q)
{if (p == NULL && q == NULL){return true;}if (p == NULL || q == NULL)//其中一个为空,另一个不为空{return false;}if (p->val != q->val){return false;}return isSameTree(p->left, q->left)&& isSameTree(p->right, q->right);
}bool isSubtree(struct TreeNode* root, struct TreeNode* subRoot) {if (root == NULL){return false;}if (isSameTree(root, subRoot)){return true;}//不一样就递归遍历这棵树return isSubtree(root->left, subRoot)|| isSubtree(root->right, subRoot);//只要有一个root返回true就行
}