机器学习的数学基础(上)
[]{#_Toc405731550 .anchor}
目录
机器学习的数学基础 1
高等数学 1
线性代数 9
概率论和数理统计 19
机器学习的数学基础 {#机器学习的数学基础 .58}
高等数学
1.导数定义:
导数和微分的概念
f′(x0)=limΔx→0f(x0+Δx)−f(x0)Δxf'(x_{0}) = \\lim_{\\Delta x \\rightarrow 0}\\,\\frac{f(x_{0} + \\Delta x) - f(x_{0})}{\\text{Δx}}f′(x0)=limΔx→0Δxf(x0+Δx)−f(x0)
(1)
或者:f′(x0)=limx→x0f(x)−f(x0)x−x0f'(x_{0}) = \\lim_{x \\rightarrow x_{0}}\\,\\frac{f(x) - f(x_{0})}{x - x_{0}}f′(x0)=limx→x0x−x0f(x)−f(x0)
(2)
2.左右导数导数的几何意义和物理意义
函数f(x)f(x)f(x)在x0x_{0}x0处的左、右导数分别定义为:
左导数:f′−(x0)=limΔx→0−f(x0+Δx)−f(x0)Δx=limx→x0−f(x)−f(x0)x−x0,(x=x0+Δx){f'}_{-}(x_{0}) = \\lim_{\\Delta x \\rightarrow 0^{-}}\\,\\frac{f(x_{0} + \\Delta x) - f(x_{0})}{\\text{Δx}} = \\lim_{x \\rightarrow x_{0}^{-}}\\,\\frac{f(x) - f(x_{0})}{x - x_{0}},(x = x_{0} + \\Delta x)f′−(x0)=limΔx→0−Δxf(x0+Δx)−f(x0)=limx→x0−x−x0f(x)−f(x0),(x=x0+Δx)
右导数:f′+(x0)=limΔx→0+f(x0+Δx)−f(x0)Δx=limx→x0+f(x)−f(x0)x−x0{f'}_{+}(x_{0}) = \\lim_{\\Delta x \\rightarrow 0^{+}}\\,\\frac{f(x_{0} + \\Delta x) - f(x_{0})}{\\text{Δx}} = \\lim_{x \\rightarrow x_{0}^{+}}\\,\\frac{f(x) - f(x_{0})}{x - x_{0}}f′+(x0)=limΔx→0+Δxf(x0+Δx)−f(x0)=limx→x0+x−x0f(x)−f(x0)
3.函数的可导性与连续性之间的关系
Th1:
函数f(x)f(x)f(x)在x0x_{0}x0处可微⇔f(x)\\Leftrightarrow f(x)⇔f(x)在x0x_{0}x0处可导。
Th2:若函数在点x0x_{0}x0处可导,则y=f(x)y = f(x)y=f(x)在点x0x_{0}x0处连续,反之则不成立.即函数连续不一定可导。
Th3:f′(x0)f'(x_{0})f′(x0)存在⇔f′−(x0)=f′+(x0)\\Leftrightarrow {f'}_{-}(x_{0}) = {f'}_{+}(x_{0})⇔f′−(x0)=f′+(x0)
4.平面曲线的切线和法线
切线方程 : y−y0=f′(x0)(x−x0)y - y_{0} = f'(x_{0})(x - x_{0})y−y0=f′(x0)(x−x0)
法线方程:y−y0=−1f′(x0)(x−x0),f′(x0)≠0y - y_{0} = - \\frac{1}{f'(x_{0})}(x - x_{0}),f'(x_{0}) \\neq 0y−y0=−f′(x0)1(x−x0),f′(x0)=0
5.四则运算法则
设函数u=u(x),v=v(x)u = u(x),v = v(x)u=u(x),v=v(x)在点xxx可导,则:
(1) (u±v)′=u′±v′\\left( u \\pm v \\right)^{'} = u^{'} \\pm v^{'}(u±v)′=u′±v′ \\text{\\ \\ \\ \\ }
(2) (uv)′=uv′+vu′(\\text{uv})' = \\text{uv}' + \\text{vu}'(uv)′=uv′+vu′
d(uv)=udv+vdud(\\text{uv}) = \\text{udv} + \\text{vdu}d(uv)=udv+vdu
(3) (uv)′=vu′−uv′v2(v≠0)(\\frac{u}{v})' = \\frac{\\text{vu}' - \\text{uv}'}{v^{2}}(v \\neq 0)(vu)′=v2vu′−uv′(v=0)
d(uv)=vdu−udvv2d(\\frac{u}{v}) = \\frac{\\text{vdu} - \\text{udv}}{v^{2}}d(vu)=v2vdu−udv
6.基本导数与微分表
(1) y=cy = cy=c(常数) 则: y′=0y^{'} = 0y′=0 dy=0\\text{dy} = 0dy=0
(2) y=xαy = x^{\\alpha}y=xα(α\\alphaα为实数) 则: y′=αxα−1y' = \\alpha x^{\\alpha - 1}y′=αxα−1
dy=αxα−1dx\\text{dy} = \\alpha x^{\\alpha - 1}\\text{dx}dy=αxα−1dx
(3) y=axy = a^{x}y=ax 则: y′=axlnay' = a^{x}\\ln ay′=axlna dy=axlnadx\\text{dy} = a^{x}\\ln\\text{adx}dy=axlnadx
特例: (ex)′=ex(e^{x})' = e^{x}(ex)′=ex d(ex)=exdxd(e^{x}) = e^{x}\\text{dx}d(ex)=exdx
(4) y′=1xlnay' = \\frac{1}{x\\ln a}y′=xlna1 则:dy=1xlnadx\\text{dy} = \\frac{1}{x\\ln a}\\text{dx}dy=xlna1dx
特例:y=lnxy = lnxy=lnx (lnx)′=1x(lnx)' = \\frac{1}{x}(lnx)′=x1 d(lnx)=1xdxd(lnx) = \\frac{1}{x}\\text{dx}d(lnx)=x1dx
(5) y=sinxy = sinxy=sinx 则:y′=cosxy' = cosxy′=cosx d(sinx)=cosxdxd(sinx) = cos\\text{xdx}d(sinx)=cosxdx
(6) y=cosxy = cosxy=cosx 则:y′=−sinxy' = - sinxy′=−sinx d(cosx)=−sinxdxd(cosx) = - sin\\text{xdx}d(cosx)=−sinxdx
(7) y=tanxy = tanxy=tanx 则: y′=1cos2x=sec2xy^{'} = \\frac{1}{\\cos^{2}x} = \\sec^{2}xy′=cos2x1=sec2x
d(tanx)=sec2xdxd(tanx) = \\sec^{2}\\text{xdx}d(tanx)=sec2xdx
(8) y=cotxy = cotxy=cotx 则:y′=−1sin2x=−csc2xy' = - \\frac{1}{\\sin^{2}x} = - \\csc^{2}xy′=−sin2x1=−csc2x
d(cotx)=−csc2xdxd(cotx) = - \\csc^{2}\\text{xdx}d(cotx)=−csc2xdx
(9) y=secxy = secxy=secx 则:y′=secxtanxy' = secx\\tan xy′=secxtanx d(secx)=secxtanxdxd(secx) = secx\\tan\\text{xdx}d(secx)=secxtanxdx
(10) y=cscxy = cscxy=cscx 则:y′=−cscxcotxy' = - cscx\\cot xy′=−cscxcotx d(cscx)=−cscxcotxdxd(cscx) = - cscx\\cot\\text{xdx}d(cscx)=−cscxcotxdx
(11) y=arcsinxy = arcsinxy=arcsinx 则:y′=11−x2y' = \\frac{1}{\\sqrt{1 - x^{2}}}y′=1−x21
d(arcsinx)=11−x2dxd(arcsinx) = \\frac{1}{\\sqrt{1 - x^{2}}}\\text{dx}d(arcsinx)=1−x21dx
(12) y=arccosxy = arccosxy=arccosx 则:y′=−11−x2y' = - \\frac{1}{\\sqrt{1 - x^{2}}}y′=−1−x21
d(arccosx)=−11−x2dxd(arccosx) = - \\frac{1}{\\sqrt{1 - x^{2}}}\\text{dx}d(arccosx)=−1−x21dx
(13) y=arctanxy = arctanxy=arctanx 则:y′=11+x2y' = \\frac{1}{1 + x^{2}}y′=1+x21
d(arctanx)=11+x2dxd(arctanx) = \\frac{1}{1 + x^{2}}\\text{dx}d(arctanx)=1+x21dx
(14) y=arccotxy = arccotxy=arccotx 则:y′=−11+x2y' = - \\frac{1}{1 + x^{2}}y′=−1+x21
d(arccotx)=−11+x2dxd(arccotx) = - \\frac{1}{1 + x^{2}}\\text{dx}d(arccotx)=−1+x21dx
(15) y=sxy = sxy=sx 则:y′=cxy' = cxy′=cx d(sx)=cxdxd(sx) = cxdxd(sx)=cxdx
(16) y=cxy = cxy=cx 则:y′=sxy' = sxy′=sx d(cx)=sxdxd(cx) = sxdxd(cx)=sxdx
7.复合函数,反函数,隐函数以及参数方程所确定的函数的微分法
(1) 反函数的运算法则:
设y=f(x)y = f(x)y=f(x)在点xxx的某邻域内单调连续,在点xxx处可导且f′(x)≠0f'(x) \\neq 0f′(x)=0,则其反函数在点xxx所对应的yyy处可导,并且有dydx=1dxdy\\frac{\\text{dy}}{\\text{dx}} = \\frac{1}{\\frac{\\text{dx}}{\\text{dy}}}dxdy=dydx1
(2)
复合函数的运算法则:若μ=φ(x)\\mu = \\varphi(x)μ=φ(x)在点xxx可导,而y=f(μ)y = f(\\mu)y=f(μ)在对应点μ\\muμ(μ=φ(x)\\mu = \\varphi(x)μ=φ(x))可导,则复合函数y=f(φ(x))y = f(\\varphi(x))y=f(φ(x))在点xxx可导,且y′=f′(μ)⋅φ′(x)y' = f'(\\mu) \\cdot \\varphi'(x)y′=f′(μ)⋅φ′(x)
(3) 隐函数导数dydx\\frac{\\text{dy}}{\\text{dx}}dxdy的求法一般有三种方法:
1)方程两边对xxx求导,要记住yyy是xxx的函数,则yyy的函数是xxx的复合函数.例如1y\\frac{1}{y}y1,y2y^{2}y2,lny\\text{lny}lny,eye^{y}ey等均是xxx的复合函数.
对xxx求导应按复合函数连锁法则做。
2)公式法.由F(x,y)=0F(x,y) = 0F(x,y)=0知
dydx=−F′x(x,y)F′y(x,y)\\frac{\\text{dy}}{\\text{dx}} = - \\frac{{F'}_{x}(x,y)}{{F'}_{y}(x,y)}dxdy=−F′y(x,y)F′x(x,y),其中,F′x(x,y){F'}_{x}(x,y)F′x(x,y),
F′y(x,y){F'}_{y}(x,y)F′y(x,y)分别表示F(x,y)F(x,y)F(x,y)对xxx和yyy的偏导数。
3)利用微分形式不变性
8.常用高阶导数公式
(1)KaTeX parse error: Got group of unknown type: 'internal'
(2)KaTeX parse error: Got group of unknown type: 'internal'
(3)KaTeX parse error: Got group of unknown type: 'internal'
(4)KaTeX parse error: Got group of unknown type: 'internal'
(5)KaTeX parse error: Got group of unknown type: 'internal'
(6)莱布尼兹公式:若u(x),v(x)u(x)\\,,v(x)u(x),v(x)均nnn阶可导,则:
(uv)(n)=∑i=0ncniu(i)v(n−i){(\\text{uv})}^{(n)} = \\sum_{i = 0}^{n}{c_{n}^{i}u^{(i)}v^{(n - i)}}(uv)(n)=∑i=0ncniu(i)v(n−i),其中u(0)=uu^{(0)} = uu(0)=u,v(0)=vv^{(0)} = vv(0)=v
9.微分中值定理,泰勒公式
Th1:(费马定理)
若函数f(x)f(x)f(x)满足条件:
(1)函数f(x)f(x)f(x)在x0x_{0}x0的某邻域内有定义,并且在此邻域内恒有
f(x)≤f(x0)f(x) \\leq f(x_{0})f(x)≤f(x0)或f(x)≥f(x0)f(x) \\geq f(x_{0})f(x)≥f(x0),
(2) f(x)f(x)f(x)在x0x_{0}x0处可导,则有 f′(x0)=0f'(x_{0}) = 0f′(x0)=0
Th2:(罗尔定理)
设函数f(x)f(x)f(x)满足条件:
(1)在闭区间[a,b]\\lbrack a,b\\rbrack[a,b]上连续;
(2)在(a,b)(a,b)(a,b)内可导;(3)f(a)=f(b)f\\left( a \\right) = f\\left( b \\right)f(a)=f(b)
则在(a,b)(a,b)(a,b)内∃\\exists∃一个ξ\\xiξ,使 f′(ξ)=0f'(\\xi) = 0f′(ξ)=0
Th3: (拉格朗日中值定理)
设函数f(x)f(x)f(x)满足条件:
(1)在[a,b]\\lbrack a,b\\rbrack[a,b]上连续;(2)在(a,b)(a,b)(a,b)内可导;
则在(a,b)(a,b)(a,b)内存在一个ξ\\xiξ,使 f(b)−f(a)b−a=f′(ξ)\\frac{f(b) - f(a)}{b - a} = f'(\\xi)b−af(b)−f(a)=f′(ξ)
Th4: (柯西中值定理)
设函数f(x)f(x)f(x),g(x)g(x)g(x)满足条件:
(1) 在[a,b]\\lbrack a,b\\rbrack[a,b]上连续;(2)
在(a,b)(a,b)(a,b)内可导且f′(x)f'(x)f′(x),g′(x)g'(x)g′(x)均存在,且g′(x)≠0g'(x) \\neq 0g′(x)=0
则在(a,b)(a,b)(a,b)内存在一个ξ\\xiξ,使
f(b)−f(a)g(b)−g(a)=f′(ξ)g′(ξ)\\frac{f(b) - f(a)}{g(b) - g(a)} = \\frac{f'(\\xi)}{g'(\\xi)}g(b)−g(a)f(b)−f(a)=g′(ξ)f′(ξ)
10.洛必达法则
法则Ⅰ(00\\frac{\\mathbf{0}}{\\mathbf{0}}00型不定式极限)
设函数f(x),g(x)f\\left( x \\right),g\\left( x \\right)f(x),g(x)满足条件:
limx→x0f(x)=0,limx→x0g(x)=0\\lim_{x \\rightarrow x_{0}}\\, f\\left( x \\right) = 0,\\lim_{x \\rightarrow x_{0}}\\, g\\left( x \\right) = 0limx→x0f(x)=0,limx→x0g(x)=0;
f(x),g(x)f\\left( x \\right),g\\left( x \\right)f(x),g(x)在x0x_{0}x0的邻域内可导
(在x0x_{0}x0处可除外)且g′(x)≠0g'\\left( x \\right) \\neq 0g′(x)=0;
limx→x0f′(x)g′(x)\\lim_{x \\rightarrow x_{0}}\\,\\frac{f'\\left( x \\right)}{g'\\left( x \\right)}limx→x0g′(x)f′(x)存在(或∞\\infty∞)。
则:
limx→x0f(x)g(x)=limx→x0f′(x)g′(x)\\lim_{x \\rightarrow x_{0}}\\,\\frac{f\\left( x \\right)}{g\\left( x \\right)} = \\lim_{x \\rightarrow x_{0}}\\,\\frac{f'\\left( x \\right)}{g'\\left( x \\right)}limx→x0g(x)f(x)=limx→x0g′(x)f′(x)
法则I′\\mathbf{I'}I′
(00\\frac{\\mathbf{0}}{\\mathbf{0}}00型不定式极限)
设函数f(x),g(x)f\\left( x \\right),g\\left( x \\right)f(x),g(x)满足条件:
limx→∞f(x)=0,limx→∞g(x)=0\\lim_{x \\rightarrow \\infty}\\, f\\left( x \\right) = 0,\\lim_{x \\rightarrow \\infty}\\, g\\left( x \\right) = 0limx→∞f(x)=0,limx→∞g(x)=0;存在一个X>0X > 0X>0,当∣x∣>X\\left| x \\right| > X∣x∣>X时,f(x),g(x)f\\left( x \\right),g\\left( x \\right)f(x),g(x)可导,且g′(x)≠0g'\\left( x \\right) \\neq 0g′(x)=0;limx→x0f′(x)g′(x)\\lim_{x \\rightarrow x_{0}}\\,\\frac{f'\\left( x \\right)}{g'\\left( x \\right)}limx→x0g′(x)f′(x)存在(或∞\\infty∞)。
则:
limx→x0f(x)g(x)=limx→x0f′(x)g′(x).\\lim_{x \\rightarrow x_{0}}\\,\\frac{f\\left( x \\right)}{g\\left( x \\right)} = \\lim_{x \\rightarrow x_{0}}\\,\\frac{f'\\left( x \\right)}{g'\\left( x \\right)}.limx→x0g(x)f(x)=limx→x0g′(x)f′(x).
法则Ⅱ(∞∞\\frac{\\mathbf{\\infty}}{\\mathbf{\\infty}}∞∞型不定式极限)
设函数f(x),g(x)f\\left( x \\right),g\\left( x \\right)f(x),g(x)满足条件:
limx→x0f(x)=∞,limx→x0g(x)=∞\\lim_{x \\rightarrow x_{0}}\\, f\\left( x \\right) = \\infty,\\lim_{x \\rightarrow x_{0}}\\, g\\left( x \\right) = \\inftylimx→x0f(x)=∞,limx→x0g(x)=∞;
f(x),g(x)f\\left( x \\right),g\\left( x \\right)f(x),g(x)在x0x_{0}x0 的邻域内可
导(在x0x_{0}x0处可除外)且g′(x)≠0g'\\left( x \\right) \\neq 0g′(x)=0;limx→x0f′(x)g′(x)\\lim_{x \\rightarrow x_{0}}\\,\\frac{f'\\left( x \\right)}{g'\\left( x \\right)}limx→x0g′(x)f′(x)存在(或∞\\infty∞)。
则:
limx→x0f(x)g(x)=limx→x0f′(x)g′(x).\\lim_{x \\rightarrow x_{0}}\\,\\frac{f\\left( x \\right)}{g\\left( x \\right)} = \\lim_{x \\rightarrow x_{0}}\\,\\frac{f'\\left( x \\right)}{g'\\left( x \\right)}.limx→x0g(x)f(x)=limx→x0g′(x)f′(x).
同理法则II′II'II′(∞∞\\frac{\\infty}{\\infty}∞∞型不定式极限)仿法则I′I'I′可写出
11.泰勒公式
设函数f(x)f(x)f(x)在点x0x_{0}x0处的某邻域内具有n+1n + 1n+1阶导数,则对该邻域内异于x0x_{0}x0的任意点xxx,在x0x_{0}x0与xxx之间至少存在一个ξ\\xiξ,使得:
f(x)=f(x0)+f′(x0)(x−x0)+12!f′′(x0)(x−x0)2+⋯f(x) = f(x_{0}) + f'(x_{0})(x - x_{0}) + \\frac{1}{2!}f''(x_{0}){(x - x_{0})}^{2} + \\cdotsf(x)=f(x0)+f′(x0)(x−x0)+2!1f′′(x0)(x−x0)2+⋯
+f(n)(x0)n!(x−x0)n+Rn(x)+ \\frac{f^{(n)}(x_{0})}{n!}{(x - x_{0})}^{n} + R_{n}(x)+n!f(n)(x0)(x−x0)n+Rn(x)
其中
Rn(x)=f(n+1)(ξ)(n+1)!(x−x0)n+1R_{n}(x) = \\frac{f^{(n + 1)}(\\xi)}{(n + 1)!}{(x - x_{0})}^{n + 1}Rn(x)=(n+1)!f(n+1)(ξ)(x−x0)n+1称为f(x)f(x)f(x)在点x0x_{0}x0处的nnn阶泰勒余项。
令x0=0x_{0} = 0x0=0,则nnn阶泰勒公式:
f(x)=f(0)+f′(0)x+12!f′′(0)x2+⋯+f(n)(0)n!xn+Rn(x)f(x) = f(0) + f'(0)x + \\frac{1}{2!}f''(0)x^{2} + \\cdots + \\frac{f^{(n)}(0)}{n!}x^{n} + R_{n}(x)f(x)=f(0)+f′(0)x+2!1f′′(0)x2+⋯+n!f(n)(0)xn+Rn(x)……
(1) 其中
Rn(x)=f(n+1)(ξ)(n+1)!xn+1R_{n}(x) = \\frac{f^{(n + 1)}(\\xi)}{(n + 1)!}x^{n + 1}Rn(x)=(n+1)!f(n+1)(ξ)xn+1,ξ\\xiξ在0与xxx之间。(1)式称为麦克劳林公式
常用五种函数在x0=0x_{0} = 0x0=0处的泰勒公式 :
ex=1+x+12!x2+⋯+1n!xn+xn+1(n+1)!eξe^{x} = 1 + x + \\frac{1}{2!}x^{2} + \\cdots + \\frac{1}{n!}x^{n} + \\frac{x^{n + 1}}{(n + 1)!}e^{\\xi}ex=1+x+2!1x2+⋯+n!1xn+(n+1)!xn+1eξ
或 =1+x+12!x2+⋯+1n!xn+o(xn)= 1 + x + \\frac{1}{2!}x^{2} + \\cdots + \\frac{1}{n!}x^{n} + o(x^{n})=1+x+2!1x2+⋯+n!1xn+o(xn)
sinx=x−13!x3+⋯+xnn!sinnπ2+xn+1(n+1)!sin(ξ+n+12π)\\sin x = x - \\frac{1}{3!}x^{3} + \\cdots + \\frac{x^{n}}{n!}\\sin\\frac{\\text{nπ}}{2} + \\frac{x^{n + 1}}{\\left( n + 1 \\right)!}\\sin\\left( \\xi + \\frac{n + 1}{2}\\pi \\right)sinx=x−3!1x3+⋯+n!xnsin2nπ+(n+1)!xn+1sin(ξ+2n+1π)
或
=x−13!x3+⋯+xnn!sinnπ2+o(xn)= x - \\frac{1}{3!}x^{3} + \\cdots + \\frac{x^{n}}{n!}\\sin\\frac{\\text{nπ}}{2} + o\\left( x^{n} \\right)=x−3!1x3+⋯+n!xnsin2nπ+o(xn)
cosx=1−12!x2+⋯+xnn!cosnπ2+xn+1(n+1)!cos(ξ+n+12π)\\cos x = 1 - \\frac{1}{2!}x^{2} + \\cdots + \\frac{x^{n}}{n!}\\cos\\frac{\\text{nπ}}{2} + \\frac{x^{n + 1}}{(n + 1)!}cos(\\xi + \\frac{n + 1}{2}\\pi)cosx=1−2!1x2+⋯+n!xncos2nπ+(n+1)!xn+1cos(ξ+2n+1π)
或
=1−12!x2+⋯+xnn!cosnπ2+o(xn)= 1 - \\frac{1}{2!}x^{2} + \\cdots + \\frac{x^{n}}{n!}\\cos\\frac{\\text{nπ}}{2} + o(x^{n})=1−2!1x2+⋯+n!xncos2nπ+o(xn)
ln(1+x)=x−12x2+13x3−⋯+(−1)n−1xnn+(−1)nxn+1(n+1)(1+ξ)n+1ln(1 + x) = x - \\frac{1}{2}x^{2} + \\frac{1}{3}x^{3} - \\cdots + {( - 1)}^{n - 1}\\frac{x^{n}}{n} + \\frac{{( - 1)}^{n}x^{n + 1}}{(n + 1){(1 + \\xi)}^{n + 1}}ln(1+x)=x−21x2+31x3−⋯+(−1)n−1nxn+(n+1)(1+ξ)n+1(−1)nxn+1
或
=x−12x2+13x3−⋯+(−1)n−1xnn+o(xn)= x - \\frac{1}{2}x^{2} + \\frac{1}{3}x^{3} - \\cdots + {( - 1)}^{n - 1}\\frac{x^{n}}{n} + o(x^{n})=x−21x2+31x3−⋯+(−1)n−1nxn+o(xn)
(1+x)m=1+mx+m(m−1)2!x2+⋯+m(m−1)⋯(m−n+1)n!xn{(1 + x)}^{m} = 1 + \\text{mx} + \\frac{m(m - 1)}{2!}x^{2} + \\cdots + \\frac{m(m - 1)\\cdots(m - n + 1)}{n!}x^{n}(1+x)m=1+mx+2!m(m−1)x2+⋯+n!m(m−1)⋯(m−n+1)xn
+m(m−1)⋯(m−n+1)(n+1)!xn+1(1+ξ)m−n−1+ \\frac{m(m - 1)\\cdots(m - n + 1)}{(n + 1)!}x^{n + 1}{(1 + \\xi)}^{m - n - 1}+(n+1)!m(m−1)⋯(m−n+1)xn+1(1+ξ)m−n−1
或
(1+x)m=1+mx+m(m−1)2!x2+⋯+m(m−1)⋯(m−n+1)n!xn+o(xn){(1 + x)}^{m} = 1 + \\text{mx} + \\frac{m(m - 1)}{2!}x^{2} + \\cdots + \\frac{m(m - 1)\\cdots(m - n + 1)}{n!}x^{n} + o(x^{n})(1+x)m=1+mx+2!m(m−1)x2+⋯+n!m(m−1)⋯(m−n+1)xn+o(xn)
12.函数单调性的判断
Th1:
设函数f(x)f(x)f(x)在(a,b)(a,b)(a,b)区间内可导,如果对∀x∈(a,b)\\forall x \\in (a,b)∀x∈(a,b),都有KaTeX parse error: Got group of unknown type: 'internal'(或KaTeX parse error: Got group of unknown type: 'internal'),则函数f(x)f(x)f(x)在(a,b)(a,b)(a,b)内是单调增加的(或单调减少)。
Th2:
(取极值的必要条件)设函数f(x)f(x)f(x)在x0x_{0}x0处可导,且在x0x_{0}x0处取极值,则KaTeX parse error: Got group of unknown type: 'internal'.
Th3:
(取极值的第一充分条件)设函数f(x)f(x)f(x)在x0x_{0}x0的某一邻域内可微,且KaTeX parse error: Got group of unknown type: 'internal'(或f(x)f(x)f(x)在x0x_{0}x0处连续,但KaTeX parse error: Got group of unknown type: 'internal'不存在.)。
(1)若当xxx经过x0x_{0}x0时,KaTeX parse error: Got group of unknown type: 'internal'由“+”变“-”,则f(x0)f(x_{0})f(x0)为极大值;
(2)若当xxx经过x0x_{0}x0时,KaTeX parse error: Got group of unknown type: 'internal'由“-”变“+”,则f(x0)f(x_{0})f(x0)为极小值;
(3)若KaTeX parse error: Got group of unknown type: 'internal'经过x=x0x = x_{0}x=x0的两侧不变号,则f(x0)f(x_{0})f(x0)不是极值。
Th4:
(取极值的第二充分条件)设f(x)f(x)f(x)在点x0x_{0}x0处有f′′(x)≠0f''(x) \\neq 0f′′(x)=0,且KaTeX parse error: Got group of unknown type: 'internal',则:
当KaTeX parse error: Got group of unknown type: 'internal'时,f(x0)f(x_{0})f(x0)为极大值;
当KaTeX parse error: Got group of unknown type: 'internal'时,f(x0)f(x_{0})f(x0)为极小值.
注:如果KaTeX parse error: Got group of unknown type: 'internal',此方法失效。
13.渐近线的求法
(1)水平渐近线
若limx→+∞f(x)=b\\lim_{x \\rightarrow + \\infty}\\, f(x) = blimx→+∞f(x)=b,或limx→−∞f(x)=b\\lim_{x \\rightarrow - \\infty}\\, f(x) = blimx→−∞f(x)=b,则y=by = by=b
称为函数y=f(x)y = f(x)y=f(x)的水平渐近线。
(2)铅直渐近线
若limx→x0−f(x)=∞\\lim_{x \\rightarrow x_{0}^{-}}\\, f(x) = \\inftylimx→x0−f(x)=∞,或limx→x0+f(x)=∞\\lim_{x \\rightarrow x_{0}^{+}}\\, f(x) = \\inftylimx→x0+f(x)=∞,则x=x0x = x_{0}x=x0
称为y=f(x)y = f(x)y=f(x)的铅直渐近线。
(3)斜渐近线
若a=limx→∞f(x)x,b=limx→∞[f(x)−ax]a = \\lim_{x \\rightarrow \\infty}\\,\\frac{f(x)}{x},\\quad b = \\lim_{x \\rightarrow \\infty}\\,\\lbrack f(x) - \\text{ax}\\rbracka=limx→∞xf(x),b=limx→∞[f(x)−ax],则
y=ax+by = \\text{ax} + by=ax+b称为y=f(x)y = f(x)y=f(x)的斜渐近线。
14.函数凹凸性的判断
Th1: (凹凸性的判别定理)若在I上f′′(x)<0f''(x) < 0f′′(x)<0(或f′′(x)>0f''(x) > 0f′′(x)>0),
则f(x)f(x)f(x)在I上是凸的(或凹的)。
Th2:
(拐点的判别定理1)若在x0x_{0}x0处f′′(x)=0f''(x) = 0f′′(x)=0,(或f′′(x)f''(x)f′′(x)不存在),当xxx变动经过x0x_{0}x0时,f′′(x)f''(x)f′′(x)变号,则(x0,f(x0))(x_{0},f(x_{0}))(x0,f(x0))为拐点。
Th3:
(拐点的判别定理2)设f(x)f(x)f(x)在x0x_{0}x0点的某邻域内有三阶导数,且f′′(x)=0f''(x) = 0f′′(x)=0,f′′′(x)≠0f'''(x) \\neq 0f′′′(x)=0,则(x0,f(x0))(x_{0},f(x_{0}))(x0,f(x0))为拐点。
15.弧微分
dS=1+y′2dx\\text{dS} = \\sqrt{1 + y'^{2}}\\text{dx}dS=1+y′2dx
16.曲率
曲线y=f(x)y = f(x)y=f(x)在点(x,y)(x,y)(x,y)处的曲率k=∣y′′∣(1+y′2)32.k = \\frac{\\left| y'' \\right|}{{(1 + y'^{2})}^{\\frac{3}{2}}}.k=(1+y′2)23∣y′′∣.
对于参数方程:
{x=φ(t)y=ψ(t),k=∣φ′(t)ψ′′(t)−φ′′(t)ψ′(t)∣[φ′2(t)+ψ′2(t)]32\\left\\{ \\begin{matrix} & x = \\varphi(t) \\\\ & y = \\psi(t) \\\\ \\end{matrix} \\right.\\ ,k = \\frac{\\left| \\varphi'(t)\\psi''(t) - \\varphi''(t)\\psi'(t) \\right|}{{\\lbrack\\varphi'^{2}(t) + \\psi'^{2}(t)\\rbrack}^{\\frac{3}{2}}}{x=φ(t)y=ψ(t) ,k=[φ′2(t)+ψ′2(t)]23∣φ′(t)ψ′′(t)−φ′′(t)ψ′(t)∣
17.曲率半径
曲线在点MMM处的曲率k(k≠0)k(k \\neq 0)k(k=0)与曲线在点MMM处的曲率半径ρ\\rhoρ有如下关系:ρ=1k\\rho = \\frac{1}{k}ρ=k1
[]{#header-n246 .anchor}