尚硅谷大数据技术Zookeeper教程-笔记02【服务器动态上下线监听案例、ZooKeeper分布式锁案例、企业面试真题】
视频地址:【尚硅谷】大数据技术之Zookeeper 3.5.7版本教程_哔哩哔哩_bilibili
- 尚硅谷大数据技术Zookeeper教程-笔记01【Zookeeper(入门、本地安装、集群操作)】
- 尚硅谷大数据技术Zookeeper教程-笔记02【服务器动态上下线监听案例、ZooKeeper分布式锁案例、企业面试真题】
- 尚硅谷大数据技术Zookeeper教程-笔记03【源码解析-算法基础】
- 尚硅谷大数据技术Zookeeper教程-笔记04【源码解析-源码详解】
目录
第04章-服务器动态上下线监听案例
P020【020_尚硅谷_zk_案例_服务器动态上下线_需求分析】04:41
P021【021_尚硅谷_zk_案例_服务器动态上下线_服务器注册】10:44
P022【022_尚硅谷_zk_案例_服务器动态上下线_客户端监听】10:01
P023【023_尚硅谷_zk_案例_服务器动态上下线_测试】06:55
第05章-ZooKeeper分布式锁案例
P024【024_尚硅谷_zk_案例_分布式锁_需求分析】05:18
P025【025_尚硅谷_zk_案例_分布式锁_代码实现(上)】09:57
P026【026_尚硅谷_zk_案例_分布式锁_代码实现(下)】16:19
P027【027_尚硅谷_zk_案例_分布式锁_测试】05:39
P028【028_尚硅谷_zk_案例_分布式锁_成熟框架curator】09:44
第06章-企业面试真题(面试重点)
P029【029_尚硅谷_zk_企业面试真题】03:32
第04章-服务器动态上下线监听案例
P020【020_尚硅谷_zk_案例_服务器动态上下线_需求分析】04:41
第 4 章 服务器动态上下线监听案例
4.1 需求
某分布式系统中,主节点可以有多台,可以动态上下线,任意一台客户端都能实时感知到主节点服务器的上下线。
4.2 需求分析
P021【021_尚硅谷_zk_案例_服务器动态上下线_服务器注册】10:44
package com.atguigu.case1;import org.apache.zookeeper.*;import java.io.IOException;public class DistributeServer {private String connectString = "node1:2181,node2:2181,node3:2181";private int sessionTimeout = 2000;private ZooKeeper zk;public static void main(String[] args) throws IOException, KeeperException, InterruptedException {DistributeServer server = new DistributeServer();//1、获取zk连接server.getConnect();//2、注册服务器到zk集群server.regist(args[0]);//3、启动业务逻辑(睡觉)server.business();}//1、获取zk连接private void getConnect() throws IOException {zk = new ZooKeeper(connectString, sessionTimeout, new Watcher() {@Overridepublic void process(WatchedEvent watchedEvent) {}});}//2、注册服务器到zk集群private void regist(String hostname) throws KeeperException, InterruptedException {String create = zk.create("/servers/" + hostname, hostname.getBytes(), ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL_SEQUENTIAL);System.out.println(hostname + " is online");}//3、启动业务逻辑(睡觉)private void business() throws InterruptedException {Thread.sleep(Long.MAX_VALUE);}
}
P022【022_尚硅谷_zk_案例_服务器动态上下线_客户端监听】10:01
package com.atguigu.case1;import org.apache.zookeeper.KeeperException;
import org.apache.zookeeper.WatchedEvent;
import org.apache.zookeeper.Watcher;
import org.apache.zookeeper.ZooKeeper;import java.io.IOException;
import java.util.ArrayList;
import java.util.List;public class DistributeClient {private String connectString = "node1:2181,node2:2181,node3:2181";private int sessionTimeout = 2000;private ZooKeeper zk;public static void main(String[] args) throws IOException, KeeperException, InterruptedException {DistributeClient client = new DistributeClient();//1、获取zk连接client.getConnect();//2、监听/servers下面子节点的增加和删除client.getServerList();//3、业务逻辑(睡觉)client.business();}//1、获取zk连接private void getConnect() throws IOException {zk = new ZooKeeper(connectString, sessionTimeout, new Watcher() {@Overridepublic void process(WatchedEvent watchedEvent) {try {getServerList();} catch (KeeperException e) {e.printStackTrace();} catch (InterruptedException e) {e.printStackTrace();}}});}//2、监听/servers下面子节点的增加和删除private void getServerList() throws KeeperException, InterruptedException {List<String> children = zk.getChildren("/servers", true);ArrayList<String> servers = new ArrayList<>();for (String child : children) {byte[] data = zk.getData("/servers/" + child, false, null);servers.add(new String(data));}System.out.println(servers);//打印}//3、业务逻辑(睡觉)private void business() throws InterruptedException {Thread.sleep(Long.MAX_VALUE);}
}
P023【023_尚硅谷_zk_案例_服务器动态上下线_测试】06:55
第05章-ZooKeeper分布式锁案例
P024【024_尚硅谷_zk_案例_分布式锁_需求分析】05:18
第 5 章 ZooKeeper分布式锁案例
什么叫做分布式锁呢? 比如说"进程 1"在使用该资源的时候,会先去获得锁,"进程 1"获得锁以后会对该资源保持独占,这样其他进程就无法访问该资源,"进程 1"用完该资源以后就将锁释放掉,让其他进程来获得锁,那么通过这个锁机制,我们就能保证了分布式系统中多个进程能够有序的访问该临界资源。那么我们把这个分布式环境下的这个锁叫作分布式锁。
分布式锁案例分析
P025【025_尚硅谷_zk_案例_分布式锁_代码实现(上)】09:57
5.1 原生Zookeeper实现分布式锁案例
package com.atguigu.case2;import org.apache.zookeeper.*;
import org.apache.zookeeper.data.Stat;import java.io.IOException;
import java.util.Collections;
import java.util.List;
import java.util.concurrent.CountDownLatch;public class DistributedLock {private final String connectString = "hadoop102:2181,hadoop103:2181,hadoop104:2181";private final int sessionTimeout = 2000;private final ZooKeeper zk;private CountDownLatch connectLatch = new CountDownLatch(1);private CountDownLatch waitLatch = new CountDownLatch(1);private String waitPath;private String currentMode;public DistributedLock() throws IOException, InterruptedException, KeeperException {//获取连接zk = new ZooKeeper(connectString, sessionTimeout, new Watcher() {@Overridepublic void process(WatchedEvent watchedEvent) {//connectLatch,如果连接上zk,可以释放if (watchedEvent.getState() == Event.KeeperState.SyncConnected) {connectLatch.countDown();}//waitLatch需要释放if (watchedEvent.getType() == Event.EventType.NodeDeleted && watchedEvent.getPath().equals(waitPath)) {waitLatch.countDown();}}});//等待zk正常连接后,往下走程序connectLatch.await();//判断根节点/locks是否存在Stat stat = zk.exists("/locks", false);if (stat == null) {//创建一下根节点zk.create("/locks", "locks".getBytes(), ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT);}}//对zk加锁public void zklock() {//创建对应的临时带序号节点//判断创建的节点是否是最小的序号节点,如果是获取到锁;如果不是,监听他序号前一个节点}//解锁public void unZkLock() {//删除节点}
}
P026【026_尚硅谷_zk_案例_分布式锁_代码实现(下)】16:19
package com.atguigu.case2;import org.apache.zookeeper.*;
import org.apache.zookeeper.data.Stat;import java.io.IOException;
import java.util.Collections;
import java.util.List;
import java.util.concurrent.CountDownLatch;public class DistributedLock {private final String connectString = "hadoop102:2181,hadoop103:2181,hadoop104:2181";private final int sessionTimeout = 2000;private final ZooKeeper zk;private CountDownLatch connectLatch = new CountDownLatch(1);private CountDownLatch waitLatch = new CountDownLatch(1);private String waitPath;private String currentMode;public DistributedLock() throws IOException, InterruptedException, KeeperException {//获取连接zk = new ZooKeeper(connectString, sessionTimeout, new Watcher() {@Overridepublic void process(WatchedEvent watchedEvent) {//connectLatch,如果连接上zk,可以释放if (watchedEvent.getState() == Event.KeeperState.SyncConnected) {connectLatch.countDown();}//waitLatch需要释放if (watchedEvent.getType() == Event.EventType.NodeDeleted && watchedEvent.getPath().equals(waitPath)) {waitLatch.countDown();}}});//等待zk正常连接后,往下走程序connectLatch.await();//判断根节点/locks是否存在Stat stat = zk.exists("/locks", false);if (stat == null) {//创建一下根节点zk.create("/locks", "locks".getBytes(), ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT);}}//对zk加锁public void zklock() {//创建对应的临时带序号节点try {currentMode = zk.create("/locks/" + "seq-", null, ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL_SEQUENTIAL);//wait一小会, 让结果更清晰一些Thread.sleep(10);//判断创建的节点是否是最小的序号节点,如果是获取到锁;如果不是,监听他序号前一个节点List<String> children = zk.getChildren("/locks", false);//如果children 只有一个值,那就直接获取锁;如果有多个节点,需要判断谁最小if (children.size() == 1) {return;} else {Collections.sort(children);//获取节点名称 seq-00000000String thisNode = currentMode.substring("/locks/".length());//通过seq-00000000获取该节点在children集合的位置int index = children.indexOf(thisNode);//判断if (index == -1) {System.out.println("数据异常");} else if (index == 0) {//就一个节点,可以获取锁了return;} else {//需要监听他前一个节点变化waitPath = "/locks/" + children.get(index - 1);zk.getData(waitPath, true, new Stat());//等待监听waitLatch.await();return;}}} catch (KeeperException e) {e.printStackTrace();} catch (InterruptedException e) {e.printStackTrace();}}//解锁public void unZkLock() {//删除节点try {zk.delete(this.currentMode, -1);} catch (InterruptedException e) {e.printStackTrace();} catch (KeeperException e) {e.printStackTrace();}}
}
P027【027_尚硅谷_zk_案例_分布式锁_测试】05:39
package com.atguigu.case2;import org.apache.zookeeper.KeeperException;import java.io.IOException;public class DistributedLockTest {public static void main(String[] args) throws InterruptedException, IOException, KeeperException {final DistributedLock lock1 = new DistributedLock();final DistributedLock lock2 = new DistributedLock();new Thread(new Runnable() {@Overridepublic void run() {try {lock1.zklock();System.out.println("线程1 启动,获取到锁");Thread.sleep(5 * 1000);lock1.unZkLock();System.out.println("线程1 释放锁");} catch (InterruptedException e) {e.printStackTrace();}}}).start();new Thread(new Runnable() {@Overridepublic void run() {try {lock2.zklock();System.out.println("线程2 启动,获取到锁");Thread.sleep(5 * 1000);lock2.unZkLock();System.out.println("线程2 释放锁");} catch (InterruptedException e) {e.printStackTrace();}}}).start();}
}
P028【028_尚硅谷_zk_案例_分布式锁_成熟框架curator】09:44
5.2 Curator框架实现分布式锁案例
1)原生的 Java API 开发存在的问题
(1)会话连接是异步的,需要自己去处理。比如使用CountDownLatch
(2)Watch 需要重复注册,不然就不能生效
(3)开发的复杂性还是比较高的
(4)不支持多节点删除和创建。需要自己去递归
2)Curator 是一个专门解决分布式锁的框架,解决了原生 JavaAPI 开发分布式遇到的问题。
详情请查看官方文档:https://curator.apache.org/index.html
3)Curator 案例实操
package com.atguigu.case3;import org.apache.curator.framework.CuratorFramework;
import org.apache.curator.framework.CuratorFrameworkFactory;
import org.apache.curator.framework.recipes.locks.InterProcessMutex;
import org.apache.curator.retry.ExponentialBackoffRetry;public class CuratorLockTest {public static void main(String[] args) {//创建分布式锁1InterProcessMutex lock1 = new InterProcessMutex(getCuratorFramework(), "/locks");//创建分布式锁2InterProcessMutex lock2 = new InterProcessMutex(getCuratorFramework(), "/locks");new Thread(new Runnable() {@Overridepublic void run() {try {lock1.acquire();System.out.println("线程1,获取到锁。");lock1.acquire();System.out.println("线程1,再次获取到锁。");Thread.sleep(5 * 1000);lock1.release();System.out.println("线程1,释放锁。");lock1.release();System.out.println("线程1,再次释放锁。");} catch (Exception e) {e.printStackTrace();}}}).start();new Thread(new Runnable() {@Overridepublic void run() {try {lock2.acquire();System.out.println("线程2,获取到锁。");lock2.acquire();System.out.println("线程2,再次获取到锁。");Thread.sleep(5 * 1000);lock2.release();System.out.println("线程2,释放锁。");lock2.release();System.out.println("线程2,再次释放锁。");} catch (Exception e) {e.printStackTrace();}}}).start();}private static CuratorFramework getCuratorFramework() {ExponentialBackoffRetry policy = new ExponentialBackoffRetry(3000, 3);CuratorFramework client = CuratorFrameworkFactory.builder().connectString("node1:2181,node2:2181,node3:2181").connectionTimeoutMs(2000).sessionTimeoutMs(2000).retryPolicy(policy).build();client.start();//启动客户端System.out.println("zookeeper启动成功。");return client;}
}
第06章-企业面试真题(面试重点)
P029【029_尚硅谷_zk_企业面试真题】03:32
6.1 选举机制
半数机制,超过半数的投票通过,即通过。
(1)第一次启动选举规则:投票过半数时,服务器 id 大的胜出
(2)第二次启动选举规则:①EPOCH 大的直接胜出、②EPOCH 相同,事务 id 大的胜出、③事务 id 相同,服务器 id 大的胜出
6.2 生产集群安装多少zk合适?
安装奇数台。
生产经验:10 台服务器:3 台 zk;20 台服务器:5 台 zk;100 台服务器:11 台 zk;200 台服务器:11 台 zk。
服务器台数多:好处,提高可靠性;坏处:提高通信延时
6.3 常用命令
ls、get、create、delete