> 文章列表 > 计算纳什均衡

计算纳什均衡

计算纳什均衡

EXAMPLE1

[[0, 2, -1, 1],[-2, 0, 3, 1],[1, -3, 0, 1],
]

双人零和对称博弈(M=−MTM = -M^TM=MT)的所有纳什均衡都是对称纳什均衡.
max⁡pmin⁡qpMqT=min⁡qmax⁡ppMqT=pMpT=−pMpT=0\\max\\limits_p \\min\\limits_q pMq^T = \\min\\limits_q \\max\\limits_p pMq^T = pMp^T = -pMp^T = 0pmaxqminpMqT=qminpmaxpMqT=pMpT=pMpT=0

  • max min 问题如下:

    max⁡pmin⁡qpMqT⟺max⁡pmin⁡{pM}⟺{max⁡p,vvpM≽v1p≽0p1T=1\\begin{aligned} & \\max\\limits_p \\min\\limits_q pMq^T \\\\ \\iff& \\max\\limits_p \\min\\{pM\\} \\\\ \\iff& \\begin{cases} \\max\\limits_{p,v} v \\\\ pM \\succcurlyeq v1 \\\\ p \\succcurlyeq 0 \\\\ p1^T = 1 \\\\ \\end{cases} \\\\ \\end{aligned}pmaxqminpMqTpmaxmin{pM}p,vmaxvpMv1p0p1T=1

    ⟺{min⁡p,v−v2p1−p2+v⩽0−2p0+3p2+v⩽0p0−3p1+v⩽0−p0⩽0−p1⩽0−p2⩽0p0+p1+p2=1\\iff \\begin{cases} & \\min\\limits_{p,v} -v \\\\ & \\begin{matrix} & 2p_1 & -p_2 & +v &\\leqslant &0 \\\\ -2p_0 & & +3p_2 & +v &\\leqslant &0 \\\\ p_0 & -3p_1 & & +v &\\leqslant &0 \\\\ -p_0 & & & &\\leqslant &0 \\\\ & -p_1 & & &\\leqslant &0 \\\\ & & -p_2 & &\\leqslant &0 \\\\ p_0 & +p_1 & +p_2 & &= &1 \\\\ \\end{matrix} \\\\ \\end{cases}p,vminv2p0p0p0p02p13p1p1+p1p2+3p2p2+p2+v+v+v=0000001

  • max min 问题解p∗=[12,16,13]p^*=[\\frac{1}{2}, \\frac{1}{6}, \\frac{1}{3}]p=[21,61,31], v∗=0v^*=0v=0.

  • min max 问题如下:

    min⁡qmax⁡pqMTpT⟺min⁡qmax⁡{qMT}⟺{min⁡q,uuqMT≼u1q≽0q1T=1\\begin{aligned} & \\min\\limits_q \\max\\limits_p qM^Tp^T \\\\ \\iff& \\min\\limits_q \\max\\{qM^T\\} \\\\ \\iff& \\begin{cases} \\min\\limits_{q, u} u \\\\ qM^T \\preccurlyeq u1 \\\\ q \\succcurlyeq 0 \\\\ q1^T = 1 \\\\ \\end{cases} \\\\ \\end{aligned}qminpmaxqMTpTqminmax{qMT}q,uminuqMTu1q0q1T=1

    ⟺{min⁡q,uu2q1−q2−u⩽0−2q0+3q2−u⩽0q0−3q1−u⩽0−q0⩽0−q1⩽0−q2⩽0q0+q1+q2=1\\iff \\begin{cases} & \\min\\limits_{q,u} u \\\\ & \\begin{matrix} & 2q_1 & -q_2 & -u &\\leqslant &0 \\\\ -2q_0 & & +3q_2 & -u &\\leqslant &0 \\\\ q_0 & -3q_1 & & -u &\\leqslant &0 \\\\ -q_0 & & & &\\leqslant &0 \\\\ & -q_1 & & &\\leqslant &0 \\\\ & & -q_2 & &\\leqslant &0 \\\\ q_0 & +q_1 & +q_2 & &= &1 \\\\ \\end{matrix} \\\\ \\end{cases}q,uminu2q0q0q0q02q13q1q1+q1q2+3q2q2+q2uuu=0000001

  • min max 问题解得 q∗=[12,16,13]q^*=[\\frac{1}{2}, \\frac{1}{6}, \\frac{1}{3}]q=[21,61,31], u∗=0u^*=0u=0.

  • 结论:
    计算机求解结果满足 v∗=u∗v^*=u^*v=u, 因此 (p∗,q∗)(p^*,q^*)(p,q) 是一个混合策略纳什均衡.
    计算机求解结果满足 p∗=q∗p^*=q^*p=q, v∗=u∗=0v^*=u^*=0v=u=0, 与理论分析一致.


具体代码如下:

# https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linprog.htmlimport numpy
import scipyproblem_p_v = {'c': numpy.array([[0, 0, 0, -1]]),'A_ub': numpy.array([[0, 2, -1, 1],[-2, 0, 3, 1],[1, -3, 0, 1],[-1, 0, 0, 0],[0, -1, 0, 0],[0, 0, -1, 0],]),'b_ub': numpy.array([[0],[0],[0],[0],[0],[0],]),'A_eq': numpy.array([[1, 1, 1, 0]]),'b_eq': numpy.array([[1]]),
}
result_p_v = scipy.optimize.linprog(**problem_p_v, bounds=(None, None))
print(result_p_v)problem_q_u = {'c': numpy.array([[0, 0, 0, 1]]),'A_ub': numpy.array([[0, 2, -1, -1],[-2, 0, 3, -1],[1, -3, 0, -1],[-1, 0, 0, 0],[0, -1, 0, 0],[0, 0, -1, 0],]),'b_ub': numpy.array([[0],[0],[0],[0],[0],[0],]),'A_eq': numpy.array([[1, 1, 1, 0]]),'b_eq': numpy.array([[1]]),
}
result_q_u = scipy.optimize.linprog(**problem_q_u, bounds=(None, None))
print(result_q_u)

EXAMPLE2

[[1, -2, 6, -4],[2, -7, 2, 4],[-3, 4, -4, -3],[-8, 3, -2, 3],
]
  • max min 问题如下:

    max⁡pmin⁡qpMqT⟺max⁡pmin⁡{pM}⟺{max⁡p,vvpM≽v1p≽0p1T=1⟺{min⁡p,v−v[1−MT⋮1−10⋱⋮−10][pTv]≼0[1⋯10][pTv]=[1]\\begin{aligned} & \\max\\limits_p \\min\\limits_q pMq^T \\\\ \\iff& \\max\\limits_p \\min\\{pM\\} \\\\ \\iff& \\begin{cases} \\max\\limits_{p,v} v \\\\ pM \\succcurlyeq v1 \\\\ p \\succcurlyeq 0 \\\\ p1^T = 1 \\\\ \\end{cases} \\\\ \\iff& \\begin{cases} \\min\\limits_{p,v} -v \\\\ \\begin{bmatrix} & & &1 \\\\ &-M^T & &\\vdots \\\\ & & &1 \\\\ -1 & & &0 \\\\ &\\ddots & &\\vdots \\\\ & &-1 &0 \\\\ \\end{bmatrix} \\begin{bmatrix} \\\\ p^T \\\\ \\\\ v \\end{bmatrix} \\preccurlyeq 0 \\\\ \\begin{bmatrix} 1 &\\cdots &1 &0 \\end{bmatrix} \\begin{bmatrix} \\\\ p^T \\\\ \\\\ v \\end{bmatrix} = [1] \\\\ \\end{cases} \\\\ \\end{aligned}pmaxqminpMqTpmaxmin{pM}p,vmaxvpMv1p0p1T=1p,vminv1MT11100pTv0[110]pTv=[1]

  • max min 问题解得 p∗=[0.14,0.35,0.51,0]p^*=[0.14,0.35,0.51,0]p=[0.14,0.35,0.51,0], v∗=−0.69v^*=-0.69v=0.69.

  • min max 问题如下:

    min⁡qmax⁡pqMTpT⟺min⁡qmax⁡{qMT}⟺{min⁡q,uuqMT≼u1q≽0q1T=1⟺{min⁡q,uu[−1M⋮−1−10⋱⋮−10][qTu]≼0[1⋯10][qTu]=[1]\\begin{aligned} & \\min\\limits_q \\max\\limits_p qM^Tp^T \\\\ \\iff& \\min\\limits_q \\max\\{qM^T\\} \\\\ \\iff& \\begin{cases} \\min\\limits_{q, u} u \\\\ qM^T \\preccurlyeq u1 \\\\ q \\succcurlyeq 0 \\\\ q1^T = 1 \\\\ \\end{cases} \\\\ \\iff& \\begin{cases} \\min\\limits_{q,u} u \\\\ \\begin{bmatrix} & & &-1 \\\\ &M & &\\vdots \\\\ & & &-1 \\\\ -1 & & &0 \\\\ &\\ddots & &\\vdots \\\\ & &-1 &0 \\\\ \\end{bmatrix} \\begin{bmatrix} \\\\ q^T \\\\ \\\\ u \\end{bmatrix} \\preccurlyeq 0 \\\\ \\begin{bmatrix} 1 &\\cdots &1 &0 \\end{bmatrix} \\begin{bmatrix} \\\\ q^T \\\\ \\\\ u \\end{bmatrix} = [1] \\\\ \\end{cases} \\\\ \\end{aligned}qminpmaxqMTpTqminmax{qMT}q,uminuqMTu1q0q1T=1q,uminu1M11100qTu0[110]qTu=[1]

  • min max 问题解得 q∗=[0.53,0.33,0,0.14]q^*=[0.53,0.33,0,0.14]q=[0.53,0.33,0,0.14], u∗=−0.69u^*=-0.69u=0.69.

  • 结论:
    计算机求解结果满足 v∗=u∗v^*=u^*v=u, 因此 (p∗,q∗)(p^*,q^*)(p,q) 是一个混合策略纳什均衡.


具体代码如下:

# https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linprog.htmlimport numpy
import scipyM = numpy.array([[1, -2, 6, -4],[2, -7, 2, 4],[-3, 4, -4, -3],[-8, 3, -2, 3],
])problem_p_v = {'c': numpy.concatenate((numpy.zeros((1, 4)), numpy.array([[-1]])), axis=1),'A_ub': numpy.concatenate((numpy.concatenate((-M.T, numpy.ones((4, 1))), axis=1),numpy.concatenate((-numpy.identity(4), numpy.zeros((4, 1))), axis=1),),axis=0,),'b_ub': numpy.zeros((8, 1)),'A_eq': numpy.concatenate((numpy.ones((1, 4)), numpy.array([[0]])), axis=1),'b_eq': numpy.array([[1]]),
}
result_p_v = scipy.optimize.linprog(**problem_p_v, bounds=(None, None))
print(result_p_v)problem_q_u = {'c': numpy.concatenate((numpy.zeros((1, 4)), numpy.array([[1]])), axis=1),'A_ub': numpy.concatenate((numpy.concatenate((M, -numpy.ones((4, 1))), axis=1),numpy.concatenate((-numpy.identity(4), numpy.zeros((4, 1))), axis=1),),axis=0,),'b_ub': numpy.zeros((8, 1)),'A_eq': numpy.concatenate((numpy.ones((1, 4)), numpy.array([[0]])), axis=1),'b_eq': numpy.array([[1]]),
}
result_q_u = scipy.optimize.linprog(**problem_q_u, bounds=(None, None))
print(result_q_u)