> 文章列表 > 对比yolov4和yolov3

对比yolov4和yolov3

对比yolov4和yolov3

目录

1. 网络结构的不同

1.1 Backbone

1.1.1 Darknet53

1.1.2 CSPDarknet53

1.2 Neck

1.2.1 FPN

1.2.2 PAN

 1.2.3 SPP

 1.3 Head

2. ​​​​​数据增强​​​​​

2.1 CutMix

2.2 Mosaic

3. 激活函数

4. 损失函数

5. 正则化方法

知识点


记录备忘。

总体而言,yolov4是尝试组合一堆tricks,获取得到的模型,该模型具有训练更快、模型更轻、精度更高的特性。

1. 网络结构的不同

yolov4网络结构可分为以下三部分。其中backbone和neck不同,head是一样的。

1.1 Backbone

yolov3是Darknet53, yolov4是CSPDarknet53(并配合使用了SPP block增加感受野)。

                                       

1.1.1 Darknet53

属于全卷积网络结构。

(1)整体可分为1个普通的3x3核,步长为2的卷积,再接5个layer;

(2)每个layer堆叠了大量的残差块Residual Block,且每个layer之间插入一个步长为2,3x3的卷积,完成下采样过程;

(3)如果输入的是416x416,则输出三个尺度:52x52x256, 26x26x512, 13x13x1024.

1.1.2 CSPDarknet53

CSPDarknet53是在Darknet53的基础上加了CSP block. csp block的特点是充分利用跨层信息:使用Cross Stage Partial Network结构,将输入特征图分成两个部分,然后通过跨层连接来结合这两个部分的信息。这样可以在减少计算复杂度的同时,提高网络的感受野和特征表达能力。

(1)Darknet53是由一系列residual block组成;

(2)而CSPDarknet53则是在每个卷积层CBM后追加CSP blocks. 如下图所示。

图中CBL = conv + BN + Leaky relu;CBM = conv + BN + Mish. 即激活函数换成平滑非单调的Mish激活函数(后面会详细介绍)。

CSP网络结构

在进入多个残差块之前,左右两种方式都将通道数减半,坐边是简单的splict函数直接拆分通道,右边是通过1x1的卷积。通道数减半后,再进入残差块,计算量就少了。

实际的算法实现通常是采用第二种,一个是方便部署(模型转换时估计不支持split函数),一个是1x1的卷积操作使得两个分支都充分的使用到了输入的全部特征,而不是一半。具体实现如下所示。

1.2 Neck

特征融合方式,yolov3使用的是FPN,而yolov4组合使用了SPP和PAN.

1.2.1 FPN

FPN,Feature Pyramid Network结构示意图如下。FPN结构通过上采样不断的融合不同尺度的特征,得到多尺度的输出,使得网络能够预测多尺度目标。

yolov3中的Darknet53输出三种尺度的特征(b,1024,13,13), (b,512,26,26), (b,256,52,52),经过FPN结构输出的对应结果尺度是(b,num_anchor*(5+num_cls),13,13), (b,num_anchor*(5+num_cls),26,26), (b,num_anchor*(5+num_cls),52,52). 

yolov3中FPN结构如下。

1.2.2 PAN

PAN, Path Aggregation Network(路径聚合网络)网络结构如下。左边和右边的PAN区别在于不同尺度特征融合方式,左边是相加、右边是concat方式。

FPN(Feature Pyramid Network)和PAN(Path Aggregation Network)是两种常用于多尺度目标检测和语义分割任务的神经网络模型,它们的相同点和不同点如下所述:

相同点:多尺度特征融合,FPN和PAN都采用类似的特征金字塔结构来融合不同尺度的特征,以捕捉目标物体的多尺度信息。

不同点:连接方式不同,FPN是自顶向下的路径,从而形成一个单一的特征金字塔。而PAN则包含了自顶向下和自下而上的路径,路径更多,以实现不同分辨率的特征融合。

yolov4中PAN结构如下。

 1.2.3 SPP

SPP,Spatial Pyramid Pooling结构如下。下面是传统意义上的SPP结构,通过把输出划分成不同的网格数,每个网格使用不同尺度核大小的maxpool。输出固定大小的向量。

如下图所示,每个网络输出一个值,有256个通道,则最大池化后,输出的向量维度是固定的,左边的4x4个网格,输出向量维度是16x256,中间是2x2个网格,输出向量维度是4x256,右边是1x1的网格,输出向量维度是256. 最后的拼接在一起,所以最后的向量维度是固定的。方便分类网络兼容多尺度输入。

 yolov4中的SPP结构如下。可以看到有4个分支,每个分支都是最大池化,从左往右最大池化核大小是k={5x5, 9x9, 13x13, 1x1}. 采用了padding操作,使其输出不改变尺度。

 1.3 Head

yolov3和yolov4的head是一样的,都基于anchor,输出多个尺度结果:

(b,num_anchor*(5+num_cls),13,13).

(b,num_anchor*(5+num_cls),26,26).

(b,num_anchor*(5+num_cls),52,52). 

2. ​​​​​数据增强​​​​​

YOLOv4在数据增强方面比YOLOv3做得更好。YOLOv4使用了一系列新的数据增强技术,如CutMix、Mosaic等,可以帮助模型更好地学习不同角度、不同大小、不同位置的目标,从而提高模型的鲁棒性和泛化能力。而YOLOv3则使用了一些基本的数据增强技术,如随机裁剪、随机翻转等。

2.1 CutMix

 两张图片,随机裁剪其中一张图片,粘贴到另一张图片中。

2.2 Mosaic

Mosaic数据增强方法采用随机缩放、随机裁剪、随机排列的方式拼接,形成一张新的图片作为训练数据。这种增强方法可以提高模型的泛化能力,增强模型对于多样化背景、物体大小、旋转角度等情况的识别能力。

3. 激活函数

非单调的Mish激活函数是在单调递增的softplus激活函数基础上,再外包了一个单调递增的tanh激活函数。如下所示。

4. 损失函数

yolov4使用的是CIoU-loss,yolov3

Smoothing

5. 正则化方法

DropBlock.

待续。。。


知识点

参数量计算公式:

params = C_o\\times (k_w\\times k_h \\times C_i +1)

其中括号内是一个卷积核的参数量,+1是bias,C_o是卷积核个数。

计算量计算公式:

FLOPs = [(C_i\\times k_w \\times k_h) + (C_i \\times k_w \\times k_h - 1) + 1] \\times C_o \\times W \\times H

中括号内是计算出feature map中一个点所需要的计算量,一次卷积的计算量。其中第一个小括号是乘法计算量,第二个括号是加法计算量,-1是因为加法是逐个往第一个数累加的原因,+1是bias。有C_o x W x H个输出点。

参考:

深入浅出Yolo系列之Yolov3&Yolov4&Yolov5&Yolox核心基础知识完整讲解 - 知乎YOLOv4特征提取网络——CSPDarkNet结构解析及PyTorch实现 - 知乎深入浅出Yolo系列之Yolov3&Yolov4&Yolov5&Yolox核心基础知识完整讲解 - 知乎

目标检测 - Neck的设计 PAN(Path Aggregation Network)_西西弗Sisyphus的博客-CSDN博客_pan 目标检测