> 文章列表 > 频域抽取FFT(DIF-FFT)的C语言实现

频域抽取FFT(DIF-FFT)的C语言实现

频域抽取FFT(DIF-FFT)的C语言实现

原理

此处以基2频域抽取FFT为例,讲述频域抽取FFT的原理。假设FFT的长度为 N = 2 m N=2^m N=2m,我们将序列 x x x的FFT变换分为以下两个部分:
X ( k ) = ∑ n = 0 N / 2 − 1 x ( n ) W N n k + ∑ n = N / 2 N − 1 x ( n ) W N n k X(k)=\\sum_{n=0}^{N/2-1}x(n)W_N^{nk}+\\sum_{n=N/2}^{N-1}x(n)W_N^{nk} X(k)=n=0N/21x(n)WNnk+n=N/2N1x(n)WNnk
对等号右边的第二项作代换: n = n + N / 2 n=n+N/2 n=n+N/2,则有:
X ( k ) = ∑ n = 0 N / 2 − 1 x ( n ) W N n k + ∑ n = 0 N / 2 − 1 x ( n + N / 2 ) W N k ( n + N / 2 ) X(k)=\\sum_{n=0}^{N/2-1}x(n)W_N^{nk}+\\sum_{n=0}^{N/2-1}x(n+N/2)W_N^{k(n+N/2)} X(k)=n=0N/21x(n)WNnk+n=0N/21x(n+N/2)WNk(n+N/2)
由于 W N k ( n + N / 2 ) = W N k n ⋅ W N k N / 2 = ( − 1 ) k W N n k W_N^{k(n+N/2)}=W_N^{kn}\\cdot W_N^{kN/2}=(-1)^kW_N^{nk} WNk(n+N/2)=WNknWNkN/2=(1)kWNnk,故有:
X ( k ) = ∑ n = 0 N / 2 − 1 x ( n ) W N n k + ( − 1 ) k ∑ n = 0 N / 2 − 1 x ( n + N / 2 ) W N k n X(k)=\\sum_{n=0}^{N/2-1}x(n)W_N^{nk}+(-1)^k\\sum_{n=0}^{N/2-1}x(n+N/2)W_N^{kn} X(k)=n=0N/21x(n)WNnk+(1)kn=0N/21x(n+N/2)WNkn
k = 2 m k=2m k=2m以及 k = 2 m + 1 k=2m+1 k=2m+1,分别有:
X ( 2 m ) = ∑ n = 0 N / 2 − 1 ( x ( n ) + x ( n + N / 2 ) ) W N 2 n m X(2m)=\\sum_{n=0}^{N/2-1}(x(n)+x(n+N/2))W_N^{2nm} X(2m)=n=0N/21(x(n)+x(n+N/2))WN2nm
X ( 2 m + 1 ) = ∑ n = 0 N / 2 − 1 ( x ( n ) − x ( n + N / 2 ) ) W N n ( 2 m + 1 ) X(2m+1)=\\sum_{n=0}^{N/2-1}(x(n)-x(n+N/2))W_N^{n(2m+1)} X(2m+1)=n=0N/21(x(n)x(n+N/2))WNn(2m+1)
根据旋转因子 W N W_N WN的可约性,有:
X ( 2 m ) = ∑ n = 0 N / 2 − 1 ( x ( n ) + x ( n + N / 2 ) ) W N / 2 n m X(2m)=\\sum_{n=0}^{N/2-1}(x(n)+x(n+N/2))W_{N/2}^{nm} X(2m)=n=0N/21(x(n)+x(n+N/2))WN/2nm
X ( 2 m + 1 ) = ∑ m = 0 N / 2 − 1 ( x ( n ) − x ( n + N / 2 ) ) W N n ⋅ W N / 2 n m X(2m+1)=\\sum_{m=0}^{N/2-1}(x(n)-x(n+N/2))W_N^n\\cdot W_{N/2}^{nm} X(2m+1)=m=0N/21(x(n)x(n+N/2))WNnWN/2nm
x 1 ( n ) = x ( n ) + x ( n + N / 2 ) , x 2 ( n ) = ( x ( n ) − x ( n + N / 2 ) ) W N n x_1(n)=x(n)+x(n+N/2),x_2(n)=(x(n)-x(n+N/2))W_N^n x1(n)=x(n)+x(n+N/2),x2(n)=(x(n)x(n+N/2))WNn,则上式可以写作:
X ( 2 m ) = ∑ n = 0 N / 2 − 1 x 1 ( n ) W N / 2 n m X(2m)=\\sum_{n=0}^{N/2-1}x_1(n)W_{N/2}^{nm} X(2m)=n=0N/21x1(n)WN/2nm
X ( 2 m + 1 ) = ∑ n = 0 N / 2 − 1 x 2 ( n ) W N / 2 n m X(2m+1)=\\sum_{n=0}^{N/2-1}x_2(n)W_{N/2}^{nm} X(2m+1)=n=0N/21x2(n)WN/2nm
由此,我们将N点FFT转换为了两个N/2点的FFT,这就是FFT中分而治之的思想。

下图是8点频域抽取FFT的蝶形运算示意图:
频域抽取FFT(DIF-FFT)的C语言实现

实现

#include<iostream>
#include<complex.h>
#include<math.h>
#define PI 3.14159using namespace std;
typedef complex<double> cdata_t;void FFT(complex<double>* Xin,complex<double> *Xout,int N){if(N<2)Xout[0]=Xin[0];else{complex<double>* X1=new complex<double>[N/2];complex<double>* X2=new complex<double>[N/2];complex<double>* X1_out=new complex<double>[N/2];complex<double>* X2_out=new complex<double>[N/2];for(int i=0;i<N;i+=2){X1[i/2]=Xin[i];X2[i/2]=Xin[i+1];}FFT(X1,X1_out,N/2);FFT(X2,X2_out,N/2);complex<double>* W=new complex<double>[N/2];for(int i=0;i<N/2;i++){W[i].real(cos(2*PI*i/N));W[i].imag(-sin(2*PI*i/N));}for(int i=0;i<N/2;i++){Xout[i]=X1_out[i]+W[i]*X2_out[i];Xout[i+N/2]=X1_out[i]-W[i]*X2_out[i];}delete []X1;delete []X2;delete []X1_out;delete []X2_out;}return;
}void DIF_FFT8(complex<double>* Xin,complex<double>* Xout){complex<double> W[4];complex<double> TMP1[8];complex<double> TMP2[8];complex<double> TMP3[8];const int N=8;for(int i=0;i<4;i++){W[i]=complex<double>(cos(2*PI*i/N),-sin(2*PI*i/N));}//stage1for(int i=0;i<4;i++){TMP1[i]=Xin[i]+Xin[i+4];TMP1[i+4]=(Xin[i]-Xin[i+4])*W[i];}//stage2for(int i=0;i<2;i++)for(int j=0;j<2;j++){TMP2[i*4+j]=TMP1[i*4+j]+TMP1[i*4+j+2];TMP2[i*4+j+2]=(TMP1[i*4+j]-TMP1[i*4+j+2])*W[2*j];}//stage3for(int i=0;i<4;i++){TMP3[i*2]=TMP2[i*2]+TMP2[i*2+1];TMP3[i*2+1]=(TMP2[i*2]-TMP2[i*2+1])*W[0];}//Xout[0]=TMP3[0];Xout[1]=TMP3[4];Xout[2]=TMP3[2];Xout[3]=TMP3[6];Xout[4]=TMP3[1];Xout[5]=TMP3[5];Xout[6]=TMP3[3];Xout[7]=TMP3[7];}void DIF_FFT16(cdata_t* Xin,cdata_t* Xout){cdata_t W[8];cdata_t T1[16];cdata_t T2[16];cdata_t T3[16];cdata_t T4[16];//for(int i=0;i<8;i++){W[i]=cdata_t(cos(2*PI*i/16),-sin(2*PI*i/16));}//stage1for(int i=0;i<8;i++){T1[i]=Xin[i]+Xin[i+8];T1[i+8]=(Xin[i]-Xin[i+8])*W[i];}//stage2for(int i=0;i<2;i++)for(int j=0;j<4;j++){T2[i*8+j]=T1[i*8+j]+T1[i*8+j+4];T2[i*8+j+4]=(T1[i*8+j]-T1[i*8+j+4])*W[2*j];}//stage3for(int i=0;i<4;i++)for(int j=0;j<2;j++){T3[i*4+j]=T2[i*4+j]+T2[i*4+j+2];T3[i*4+j+2]=(T2[i*4+j]-T2[i*4+j+2])*W[4*j];}//stage4for(int i=0;i<8;i++){T4[2*i]=T3[2*i]+T3[2*i+1];T4[2*i+1]=T3[2*i]-T3[2*i+1];}//Xout[0]=T4[0];Xout[1]=T4[8];Xout[2]=T4[4];Xout[3]=T4[12];Xout[4]=T4[2];Xout[5]=T4[10];Xout[6]=T4[6];Xout[7]=T4[14];Xout[8]=T4[1];Xout[9]=T4[9];Xout[10]=T4[5];Xout[11]=T4[13];Xout[12]=T4[3];Xout[13]=T4[11];Xout[14]=T4[7];Xout[15]=T4[15];
}void DIF_FFT4(cdata_t* Xin,cdata_t* Xout){cdata_t W[2];cdata_t T1[4];cdata_t T2[4];for(int i=0;i<2;i++){W[i]=cdata_t(cos(2*PI*i/4),-sin(2*PI*i/4));}//stage1for(int i=0;i<2;i++){T1[i]=Xin[i]+Xin[i+2];T1[i+2]=(Xin[i]-Xin[i+2])*W[i];}//stage2for(int i=0;i<2;i++){T2[i*2]=T1[i*2]+T1[i*2+1];T2[i*2+1]=(T1[i*2]-T1[i*2+1]);}//Xout[0]=T2[0];Xout[1]=T2[2];Xout[2]=T2[1];Xout[3]=T2[3];
}int main(){//FFT_LENGTH点傅里叶变换int n=4;complex<double> X[n];complex<double> Y[n];complex<double> Y2[n];for(int i=0;i<n;i++){X[i].real(i);X[i].imag(0);}FFT(X,Y,n);if(n==4)DIF_FFT4(X,Y2);else if(n==8)DIF_FFT8(X,Y2);else if(n==16)DIF_FFT16(X,Y2);elsecout<<"未实现该长度的蝶形FFT函数"<<endl;for(int i=0;i<n;i++)cout<<Y[i]-Y2[i]<<endl;return 0;
}