> 文章列表 > Docker资源控制和镜像

Docker资源控制和镜像

Docker资源控制和镜像

目录

第一章Docker的资源控制

1.2.对内存使用的限制

1.3.对磁盘IO配额控制(blkio)的限制

第二章Docker 的数据管理

2.1.数据卷

2.2.数据卷容器

2.3.端口映射

2.4.容器互联(使用centos镜像

第三章.Docker 镜像的创建

3.1.基于现有镜像创建

3.2.基于本地模板创建

3.3.基于Dockerfile 创建

3.4.Dockerfile详解

3.5.Dockerfile 操作常用的指令

3.6.Dockerfile 案例

3.7.构建SSH镜像

3.8.systemctl镜像

3.9.nginx镜像


第一章Docker的资源控制

1.1.CPU 资源控制

cgroups,是一个非常强大的linux内核工具,他不仅可以限制被 namespace 隔离起来的资源, 还可以为资源设置权重、计算使用量、操控进程启停等等。 所以 cgroups(Control groups)实现了对资源的配额和度量。
 

cgroups有四大功能:
●资源限制:可以对任务使用的资源总额进行限制
●优先级分配:通过分配的cpu时间片数量以及磁盘IO带宽大小,实际上相当于控制了任务运行优先级
●资源统计:可以统计系统的资源使用量,如cpu时长,内存用量等
●任务控制:cgroup可以对任务执行挂起、恢复等操作
 

(1)设置CPU使用率上限

Linux通过CFS(Completely Fair Scheduler,完全公平调度器)来调度各个进程对CPU的使用。CFS默认的调度周期是100ms。
我们可以设置每个容器进程的调度周期,以及在这个周期内各个容器最多能使用多少 CPU 时间。

使用 --cpu-period 即可设置调度周期,使用 --cpu-quota 即可设置在每个周期内容器能使用的CPU时间。两者可以配合使用。
CFS 周期的有效范围是 1ms~1s,对应的 --cpu-period 的数值范围是 1000~1000000。 周期100毫秒 
而容器的 CPU 配额必须不小于 1ms,即 --cpu-quota 的值必须 >= 1000。

docker run -itd --name test5 centos:7 /bin/bash

docker ps -a
CONTAINER ID   IMAGE      COMMAND       CREATED      STATUS       PORTS     NAMES
3ed82355f811   centos:7   "/bin/bash"   5 days ago   Up 6 hours             test5

cd /sys/fs/cgroup/cpu/docker/3ed82355f81151c4568aaa6e7bc60ba6984201c119125360924bf7dfd6eaa42b/

cat cpu.cfs_quota_us 
-1

cat cpu.cfs_period_us 
100000

#cpu.cfs_period_us:cpu分配的周期(微秒,所以文件名中用 us 表示),默认为100000。

#cpu.cfs_quota_us:表示该cgroups限制占用的时间(微秒),默认为-1,表示不限制。 如果设为50000,表示占用50000/100000=50%的CPU。
 

#进行CPU压力测试
docker exec -it 3ed82355f811 /bin/bash

vim /cpu.sh

#!/bin/bash
i=0
while true
do
let i++
done

chmod +x /cpu.sh
./cpu.sh

top                    #可以看到这个脚本占了很多的cpu资源

#设置50%的比例分配CPU使用时间上限
docker run -itd --name test6 --cpu-quota 50000 centos:7 /bin/bash    

#可以重新创建一个容器并设置限额                                  或者

cd /sys/fs/cgroup/cpu/docker/3ed82355f81151c4568aaa6e7bc60ba6984201c119125360924bf7dfd6eaa42b/
echo 50000 > cpu.cfs_quota_us
docker exec -it 3ed82355f811 /bin/bash
./cpu.sh

top                    #可以看到cpu占用率接近50%,cgroups对cpu的控制起了效果
 

(2)设置CPU资源占用比(设置多个容器时才有效)
Docker 通过 --cpu-shares 指定 CPU 份额,默认值为1024,值为1024的倍数。

#创建两个容器为 c1 和 c2,若只有这两个容器,设置容器的权重,使得c1和c2的CPU资源占比为1/3和2/3
docker run -itd --name c1 --cpu-shares 512 centos:7    
docker run -itd --name c2 --cpu-shares 1024 centos:7

分别进入容器,进行压力测试
yum install -y epel-release
yum install -y stress
stress -c 4                #产生四个进程,每个进程都反复不停的计算随机数的平方根

查看容器运行状态(动态更新)
docker stats
CONTAINER ID   NAME             CPU %     MEM USAGE / LIMIT     MEM %     NET I/O          BLOCK I/O         PIDS
c3ee18e65852   c2               66.50%    5.5MiB / 976.3MiB     0.56%     20.4MB / 265kB   115MB / 14.2MB    4
bb02d3b345d8   c1               32.68%    2.625MiB / 976.3MiB   0.27%     20.4MB / 325kB   191MB / 12.7MB    4

(3)设置容器绑定指定的CPU

先分配虚拟机4个CPU核数
docker run -itd --name test7 --cpuset-cpus 1,3 centos:7 /bin/bash
 

进入容器,进行压力测试
yum install -y epel-release
yum install stress -y
stress -c 4

#退出容器,执行 top 命令再按 1 查看CPU使用情况。、

1.2.对内存使用的限制

-m(--memory=) 选项用于限制容器可以使用的最大内存
docker run -itd --name test8 -m 512m centos:7 /bin/bash

docker stats

限制可用的 swap 大小, --memory-swap
强调一下,--memory-swap 是必须要与 --memory 一起使用的。

正常情况下,--memory-swap 的值包含容器可用内存和可用 swap。
所以 -m 300m --memory-swap=1g 的含义为:容器可以使用 300M 的物理内存,并且可以使用 700M(1G - 300)的 swap。

如果 --memory-swap 设置为 0 或者 不设置,则容器可以使用的 swap 大小为 -m 值的两倍。
如果 --memory-swap 的值和 -m 值相同,则容器不能使用 swap。
如果 --memory-swap 值为 -1,它表示容器程序使用的内存受限,而可以使用的 swap 空间使用不受限制(宿主机有多少 swap 容器就可以使用多少)。

1.3.对磁盘IO配额控制(blkio)的限制

--device-read-bps:限制某个设备上的读速度bps(数据量),单位可以是kb、mb(M)或者gb。
例:docker run -itd --name test9 --device-read-bps /dev/sda:1M  centos:7 /bin/bash

--device-write-bps : 限制某个设备上的写速度bps(数据量),单位可以是kb、mb(M)或者gb。
例:docker run -itd --name test10 --device-write-bps /dev/sda:1mb centos:7 /bin/bash

--device-read-iops :限制读某个设备的iops(次数)
 
--device-write-iops :限制写入某个设备的iops(次数)

#创建容器,并限制写速度
docker run -it --name test10 --device-write-bps /dev/sda:1MB centos:7 /bin/bash
 

#通过dd来验证写速度
dd if=/dev/zero of=test.out bs=1M count=10 oflag=direct                #添加oflag参数以规避掉文件系统cache
10+0 records in
10+0 records out
10485760 bytes (10 MB) copied, 10.0025 s, 1.0 MB/s

清理docker占用的磁盘空间
docker system prune -a            #可以用于清理磁盘,删除关闭的容器、无用的数据卷和网络

第二章Docker 的数据管理

2.1.数据卷

数据卷是一个供容器使用的特殊目录,位于容器中。可将宿主机的目录挂载到数据卷上,对数据卷的修改操作立刻可见,并且更新数据不会影响镜像,从而实现数据在宿主机与容器之间的迁移。数据卷的使用类似于 Linux 下对目录进行的 mount 操作。
 

docker pull centos:7

#宿主机目录/var/www 挂载到容器中的/data1。
注意:宿主机本地目录的路径必须是使用绝对路径。如果路径不存在,Docker会自动创建相应的路径。

docker run -v /var/www:/data1 --name web1 -it centos:7 /bin/bash            #-v 选项可以在容器内创建数据卷

ls
echo "this is web1" > /data1/abc.txt
exit

返回宿主机进行查看
cat  /var/www/abc.txt

2.2.数据卷容器

 如果需要在容器之间共享一些数据,最简单的方法就是使用数据卷容器。数据卷容器是一个普通的容器,专门提供数据卷给其他容器挂载使用。

#创建一个容器作为数据卷容器
docker run --name web2 -v /data1 -v /data2 -it centos:7 /bin/bash
echo "this is web2" > /data1/abc.txt
echo "THIS IS WEB2" > /data2/ABC.txt

#使用 --volumes-from 来挂载 web2 容器中的数据卷到新的容器
docker run -it --volumes-from web2 --name web3 centos:7 /bin/bash
cat /data1/abc.txt
cat /data2/ABC.txt

2.3.端口映射

在启动容器的时候,如果不指定对应的端口,在容器外是无法通过网络来访问容器内的服务。端口映射机制将容器内的服务提供给外部网络访问,实质上就是将宿主机的端口映射到容器中,使得外部网络访问宿主机的端口便可访问容器内的服务。
 

docker run -d --name test1 -P nginx                    #随机映射端口(从32768开始)

docker run -d --name test2 -p 43000:80 nginx        #指定映射端口
 

docker ps -a
CONTAINER ID   IMAGE     COMMAND                  CREATED          STATUS          PORTS                   NAMES
9d3c04f57a68   nginx     "/docker-entrypoint.…"   4 seconds ago    Up 3 seconds    0.0.0.0:43000->80/tcp   test2
b04895f870e5   nginx     "/docker-entrypoint.…"   17 seconds ago   Up 15 seconds   0.0.0.0:49170->80/tcp   test1

浏览器访问:http://192.168.80.10:43000    、http://192.168.80.10:49170

 

2.4.容器互联(使用centos镜像)

容器互联是通过容器的名称在容器间建立一条专门的网络通信隧道。简单点说,就是会在源容器和接收容器之间建立一条隧道,接收容器可以看到源容器指定的信息。

#创建并运行源容器取名web110
docker run -itd -P --name web110 centos:7 /bin/bash

#创建并运行接收容器取名web1200,使用--link选项指定连接容器以实现容器互联
docker run -itd -P --name web1200 --link web110:web1200 centos:7 /bin/bash

#进web1200 容器, ping web110
docker exec -it web1200 bash
ping web110

第三章.Docker 镜像的创建

创建镜像有三种方法,分别为基于已有镜像创建、基于本地模板创建以及基于Dockerfile创建。

3.1.基于现有镜像创建

(1)首先启动一个镜像,在容器里做修改
docker create -it centos:7 /bin/bash

docker ps -a

CONTAINER ID   IMAGE      COMMAND       CREATED         STATUS    PORTS     NAMES
000550eb36da   centos:7   "/bin/bash"   3 seconds ago   Created             gracious_bassi

(2)然后将修改后的容器提交为新的镜像,需要使用该容器的 ID 号创建新镜像
docker commit -m "new" -a "centos" 000550eb36da centos:test
#常用选项:
-m 说明信息;
-a 作者信息;
-p 生成过程中停止容器的运行。

docker images

3.2.基于本地模板创建

通过导入操作系统模板文件可以生成镜像,模板可以从 OPENVZ 开源项目下载,下载地址为http://openvz.org/Download/template/precreated
 

wget http://download.openvz.org/template/precreated/debian-7.0-x86-minimal.tar.gz
 

#导入为镜像
cat debian-7.0-x86-minimal.tar.gz | docker import - debian:test

3.3.基于Dockerfile 创建

联合文件系统(UnionFS)
UnionFS(联合文件系统):Union文件系统(UnionFS)是一种分层、轻量级并且高性能的文件系统,它支持对文件系统的修改作为一次提交来一层层的叠加,同时可以将不同目录挂载到同一个虚拟文件系统下。AUFS、OverlayFS 及 Devicemapper 都是一种 UnionFS。

Union文件系统是Docker镜像的基础。镜像可以通过分层来进行继承,基于基础镜像(没有父镜像),可以制作各种具体的应用镜像。

特性:一次同时加载多个文件系统,但从外面看起来,只能看到一个文件系统,联合加载会把各层文件系统叠加起来,这样最终的文件系统会包含所有底层的文件和目录。

我们下载的时候看到的一层层的就是联合文件系统。
 

为什么Docker里的centos的大小才200M?
因为对于精简的OS,rootfs可以很小,只需要包含最基本的命令、工具和程序库就可以了,因为底层直接用宿主机的kernel,自己只需要提供rootfs就可以了。由此可见对于不同的linux发行版,bootfs基本是一致的,rootfs会有差别,因此不同的发行版可以公用bootfs。
 

3.4.Dockerfile详解

Docker镜像是一个特殊的文件系统,除了提供容器运行时所需的程序、库、资源、配置等文件外,还包含了一些为运行时准备的一些配置参数(如匿名卷、环境变量、用户等)。镜像不包含任何动态数据,其内容在构建之后也不会被改变。

镜像的定制实际上就是定制每一层所添加的配置、文件。如果我们可以把每一层修改、安装、构建、操作的命令都写入一个脚本,用这个脚本来构建、定制镜像,那么镜像构建透明性的问题、体积的问题就都会解决。这个脚本就是 Dockerfile。

Dockerfile是一个文本文件,其内包含了一条条的指令(Instruction),每一条指令构建一层,因此每一条指令的内容,就是描述该层应当如何构建。有了Dockerfile,当我们需要定制自己额外的需求时,只需在Dockerfile上添加或者修改指令,重新生成 image 即可, 省去了敲命令的麻烦。

除了手动生成Docker镜像之外,可以使用Dockerfile自动生成镜像。Dockerfile是由多条的指令组成的文件,其中每条指令对应 Linux 中的一条命令,Docker 程序将读取Dockerfile 中的指令生成指定镜像。

Dockerfile结构大致分为四个部分:基础镜像信息、维护者信息、镜像操作指令和容器启动时执行指令。Dockerfile每行支持一条指令,每条指令可携带多个参数,支持使用以“#“号开头的注释。
 

Docker 镜像结构的分层
镜像不是一个单一的文件,而是有多层构成。容器其实是在镜像的最上面加了一层读写层,在运行容器里做的任何文件改动,都会写到这个读写层。如果删除了容器,也就删除了其最上面的读写层,文件改动也就丢失了。Docker使用存储驱动管理镜像每层内容及可读写层的容器层。

(1)Dockerfile 中的每个指令都会创建一个新的镜像层;
(2)镜像层将被缓存和复用;
(3)当Dockerfile 的指令修改了,复制的文件变化了,或者构建镜像时指定的变量不同了,对应的镜像层缓存就会失效;
(4)某一层的镜像缓存失效,它之后的镜像层缓存都会失效;
(5)镜像层是不可变的,如果在某一层中添加一个文件,然后在下一层中删除它,则镜像中依然会包含该文件,只是这个文件在 Docker 容器中不可见了。

图解

镜像加载原理
Docker的镜像实际上由一层一层的文件系统组成,这种层级的文件系统就是UnionFS。

bootfs主要包含bootloader和kernel,bootloader主要是引导加载kernel,Linux刚启动时会加载bootfs文件系统。

在Docker镜像的最底层是bootfs,这一层与我们典型的Linux/Unix系统是一样的,包含boot加载器和内核。当boot加载完成之后整个内核就都在内存中了,此时内存的使用权已由bootfs转交给内核,此时系统也会卸载bootfs。

rootfs,在bootfs之上。包含的就是典型Linux系统中的/dev,/proc,/bin,/etc等标准目录和文件。rootfs就是各种不同的操作系统发行版,比如Ubuntu,Centos等等。

我们可以理解成一开始内核里什么都没有,操作一个命令下载debian,这时就会在内核上面加了一层基础镜像;再安装一个emacs,会在基础镜像上叠加一层image;接着再安装一个apache,又会在images上面再叠加一层image。最后它们看起来就像一个文件系统即容器的rootfs。在Docker的体系里把这些rootfs叫做Docker的镜像。但是,此时的每一层rootfs都是read-only的,我们此时还不能对其进行操作。

当我们创建一个容器,也就是将Docker镜像进行实例化,系统会在一层或是多层read-only的rootfs之上分配一层空的read-write的rootfs。

bootfs基础镜像向上分层结构图

  

3.5.Dockerfile 操作常用的指令:

(1)FROM 镜像
指定新镜像所基于的基础镜像,第一条指令必须为FROM 指令,每创建一个镜像就需要一条 FROM 指令

(2)MAINTAINER 名字
说明新镜像的维护人信息

(3)RUN 命令
在所基于的镜像上执行命令,并提交到新的镜像中

(4)ENTRYPOINT ["要运行的程序", "参数 1", "参数 2"]
设定容器启动时第一个运行的命令及其参数。
可以通过使用命令docker run --entrypoint 来覆盖镜像中的ENTRYPOINT指令的内容。

(5)CMD ["要运行的程序", "参数1", "参数2"] 
上面的是exec形式,shell形式:CMD 命令 参数1 参数2
启动容器时默认执行的命令或者脚本,Dockerfile只能有一条CMD命令。如果指定多条命令,只执行最后一条命令。
如果在docker run时指定了命令或者镜像中有ENTRYPOINT,那么CMD就会被覆盖。
CMD 可以为 ENTRYPOINT 指令提供默认参数。

java -jar    xxxxxxx.jar
docker run指定的命令———》entrypoint————》CMD  优先级

(6)EXPOSE 端口号
指定新镜像加载到 Docker 时要开启的端口

(7)ENV 环境变量 变量值
设置一个环境变量的值,会被后面的 RUN 使用
linxu PATH=$PATH:/opt
  ENV PATH $PATH:/opt

(8)ADD 源文件/目录 目标文件/目录
将源文件复制到镜像中,源文件要与 Dockerfile 位于相同目录中,或者是一个 URL  
有如下注意事项:
1、如果源路径是个文件,且目标路径是以 / 结尾, 则docker会把目标路径当作一个目录,会把源文件拷贝到该目录下。
如果目标路径不存在,则会自动创建目标路径。

2、如果源路径是个文件,且目标路径是不以 / 结尾,则docker会把目标路径当作一个文件。
如果目标路径不存在,会以目标路径为名创建一个文件,内容同源文件;
如果目标文件是个存在的文件,会用源文件覆盖它,当然只是内容覆盖,文件名还是目标文件名。
如果目标文件实际是个存在的目录,则会源文件拷贝到该目录下。 注意,这种情况下,最好显示的以 / 结尾,以避免混淆。

3、如果源路径是个目录,且目标路径不存在,则docker会自动以目标路径创建一个目录,把源路径目录下的文件拷贝进来。
如果目标路径是个已经存在的目录,则docker会把源路径目录下的文件拷贝到该目录下。

4、如果源文件是个归档文件(压缩文件),则docker会自动帮解压。    
URL下载和解压特性不能一起使用。任何压缩文件通过URL拷贝,都不会自动解压。

ADD 源文件/目录和copy有什么区别

首先都有本地复制和目录 到镜像的功能

add复制tar命令压缩包 会自动解压

URIL 拉取目录来复制

copy 只能复制本地主机文件/目录到镜像中

(9)COPY 源文件/目录 目标文件/目录
只复制本地主机上的文件/目录复制到目标地点,源文件/目录要与Dockerfile 在相同的目录中

(10)VOLUME [“目录”] 
在容器中创建一个挂载点

(11)USER 用户名/UID
指定运行容器时的用户

(12)WORKDIR 路径
为后续的 RUN、CMD、ENTRYPOINT 指定工作目录

(13)ONBUILD 命令
指定所生成的镜像作为一个基础镜像时所要运行的命令。
当在一个Dockerfile文件中加上ONBUILD指令,该指令对利用该Dockerfile构建镜像(比如为A镜像)不会产生实质性影响。
但是当编写一个新的Dockerfile文件来基于A镜像构建一个镜像(比如为B镜像)时,这时构造A镜像的Dockerfile文件中的ONBUILD指令就生效了,在构建B镜像的过程中,首先会执行ONBUILD指令指定的指令,然后才会执行其它指令。

注:请各位自己在生产中如果有的是别的dockerfile 请自习阅读,否则后果自付

(14)HEALTHCHECK
健康检查

在编写 Dockerfile 时,有严格的格式需要遵循:

●第一行必须使用 FROM 指令指明所基于的镜像名称;
●之后使用 MAINTAINER 指令说明维护该镜像的用户信息;
●然后是镜像操作相关指令,如 RUN 指令。每运行一条指令,都会给基础镜像添加新的一层。
●最后使用 CMD 指令指定启动容器时要运行的命令操作。

3.6.Dockerfile 案例

#建立工作目录
mkdir  /opt/apache
cd  /opt/apache

vim Dockerfile

#基于的基础镜像
FROM centos:7

#维护镜像的用户信息
MAINTAINER this is apache image <hmj>

#镜像操作指令安装apache软件
RUN yum -y update
RUN yum -y install httpd

#开启 80 端口
EXPOSE 80

#复制网站首页文件
ADD index.html /var/www/html/index.html

 

方法一:
#将执行脚本复制到镜像中
ADD run.sh /run.sh
RUN chmod 755 /run.sh

#启动容器时执行脚本
CMD ["/run.sh"]

方法二:
ENTRYPOINT [ "/usr/sbin/apachectl" ]
CMD ["-D", "FOREGROUND"]

准备执行脚本
vim run.sh

#!/bin/bash
rm -rf /run/httpd/*                                                                  #清理httpd的缓存
/usr/sbin/apachectl -D FOREGROUND                               #指定为前台运行


#因为Docker容器仅在它的1号进程(PID为1)运行时,会保持运行。如果1号进程退出了,Docker容器也就退出了。

准备网站页面
echo "this is test web" > index.html

//生成镜像
docker build -t httpd:centos .           #注意别忘了末尾有"."

//新镜像运行容器
docker run -d -p 1216:80 httpd:centos

//测试
http://192.168.233.100:1216/

如果有网络报错提示

[Warning] IPv4 forwarding is disabled. Networking will not work.

解决方法:
vim /etc/sysctl.conf
net.ipv4.ip_forward=1

sysctl -p
systemctl restart network
systemctl restart docker

3.7.构建SSH镜像

cd /opt/sshd

vim Dockerfile

#第一行必须指明基于的基础镜像

FROM centos:7

#作者信息

MAINTAINER this is ssh image <cxk>

#镜像的操作指令
RUN yum -y update
RUN yum -y install openssh* net-tools lsof telnet passwd

RUN echo 'abc1234' |passwd --stdin root
RUN sed -i 's/UsePAM yes/UsePAM no/g' /etc/ssh/sshd_config

#不使用PAM认证

RUN sed -ri '/^session s+required\\s+pam_loginuid.so/ s/^/#/' /etc/pam.d/sshd

#取消pam限制
RUN ssh-keygen -t rsa -A

生成密钥认证文件
RUN mkdir -p /root/.ssh && chown root.root /root && chmod 700 /root/.ssh

EXPOSE 22

CMD ["/usr/sbin/sshd" ,"-D"]                               #/usr/sbin/sshd -D 用于前台启动sshd服务

生成镜像
docker build -t systemd:centos .

docker search sshd

 docker pull macropin/sshd

docker images

docker tag macropin/sshd:latest sshd:centos

docker images

 docker run -d -P sshd:centos

docker ps -a|grep sshd

 ssh localhost -p 32768                                #知道密码就登录,之后能使用i服从fig,能在里面查看losf -i:22                                    我这里不知道就用exec登录

 docker exec -it 42ccc772c295 /bin/bash

ifconfig

 lsof -i:22

 这里ssh镜像登录容器成功

3.8.systemctl镜像

cd /opt

mkdir systemctl

cd systemctl/

vim Dockerfile

FROM sshd:centos
MAINTAINER this is systemctl images <hahaha>
ENV container docker
RUN (cd /lib/systemd/system/sysinit.target.wants/; for i in *; do [ $i == systemd-tmpfiles-setup.service ] || rm -f $i; done); \\
rm -f /lib/systemd/system/multi-user.target.wants/*; \\
rm -f /etc/systemd/system/*.wants/*; \\
rm -f /lib/systemd/system/local-fs.target.wants/*; \\
rm -f /lib/systemd/system/sockets.target.wants/*udev*; \\
rm -f /lib/systemd/system/sockets.target.wants/*initctl*; \\
rm -f /lib/systemd/system/basic.target.wants/*;\\
rm -f /lib/systemd/system/anaconda.target.wants/*;
VOLUME [“/sys/fs/cgroup\\" ]
 

docker build -t systemd:centos .

启动容器,并挂载宿主机目录挂载到容器中,和进行初始化

docker run--privileged -d -P -v /sys/fs/cgroup:/sys/fs/cgroup:ro systemd:centos /sbin/init

--privileged: 使container内的root拥有真正的root权限。否则,container内的root只是外部的个普通用户权限

docker ps -a

进入容器
docker exec -it a0d624d2bfa9 bash 

systemctl status sshd

方法二:
docker run --privileged -it -P -v /sys/fs/cgroup:/sys/fs/cgroup:ro systemd:centos sbin/init &

3.9.nginx镜像

cd /opt

mkdir nginx

cd nginx

tar xf nginx-1.20.2.tar.gz

vim Dockerfile

FROM centos:7
MAINTAINER this is nginx image <cnm>
RUN yum -y update
RUN yum -y install gcc gcc-c++ make zlib-devel pcre-devel
RUN useradd -M -s /sbin/nologin nginx
ADD nginx-1.20.2.tar.gz /opt/
WORKDIR /opt/nginx-1.20.2
RUN ./configure \\
--prefix=/usr/local/nginx \\
--user=nginx \\
--group=nginx \\
--with-http_stub_status_module && make && make install
ENV PATH /usr/local/nginx/sbin:$PATH
EXPOSE 80
EXPOSE 443
RUN echo "daemon off;" >> /usr/local/nginx/conf/nginx.conf
ADD run.sh /run.sh
RUN chmod 755 /run.sh
CMD ["/run.sh"]
 

vim run.sh

docker build -t nginx:centos . 

 

docker run -d -P nginx:centos

docker ps -a|grep nginx

 访问网页192.168.192.100:32773