> 文章列表 > 0405习题总结-不定积分

0405习题总结-不定积分

0405习题总结-不定积分

文章目录

    • 1 不定积分的基本概念
    • 2 直接积分法-基本积分公式
    • 3 第一换元法-凑微分形式法
    • 4 第二类换元法
    • 5 分部积分求不定积分
    • 6 表格法积分
    • 7 有理函数求积分
    • 后记

1 不定积分的基本概念

例1
f(x)={x+1,x≥012e−x+12,x<0求∫f(x)dxf(x)= \\begin{cases} x+1,\\quad x\\ge0\\\\ \\frac{1}{2}e^{-x}+\\frac{1}{2},\\quad x\\lt0\\\\ \\end{cases}\\\\ 求\\int{f(x)dx} f(x)={x+1,x021ex+21,x<0f(x)dx

解:f(x)在(−∞,+∞)上连续∫f(x)dx={12x2+x+C1,x≥0,C1为任意常数−12e−x+12x+C2,x<0,C2为任意常数F(x)作为f(x)的一个原函数,在x=0处连续那么C1=−12+C2,令C2=C(任意常数),则C1=−12+C∫f(x)dx={12x2+x−12+C,x≥0,C为任意常数−12e−x+12x+C,x<0解:f(x)在(-\\infty,+\\infty)上连续\\\\ \\int{f(x)dx}= \\begin{cases} \\frac{1}{2}x^2+x+C_1,\\quad x\\ge0,C_1为任意常数\\\\ -\\frac{1}{2}e^{-x}+\\frac{1}{2}x+C_2,\\quad x\\lt0,C_2为任意常数\\\\ \\end{cases}\\\\ F(x)作为f(x)的一个原函数,在x=0处连续\\\\ 那么C_1=-\\frac{1}{2}+C_2,令C_2=C(任意常数),则C_1=-\\frac{1}{2}+C\\\\ \\int{f(x)dx}= \\begin{cases} \\frac{1}{2}x^2+x-\\frac{1}{2}+C,\\quad x\\ge0,C为任意常数\\\\ -\\frac{1}{2}e^{-x}+\\frac{1}{2}x+C,\\quad x\\lt0\\\\ \\end{cases}\\\\ 解:f(x)(,+)上连续f(x)dx={21x2+x+C1,x0C1为任意常数21ex+21x+C2,x<0,C2为任意常数F(x)作为f(x)的一个原函数,在x=0处连续那么C1=21+C2,C2=C(任意常数),C1=21+Cf(x)dx={21x2+x21+C,x0C为任意常数21ex+21x+C,x<0

注意:

  1. f(x)f(x)f(x)连续,F(x)可导。
  2. f(x)f(x)f(x)有第一类,第二类无穷间断点,则不存在原函数。
  3. f(x)f(x)f(x)有第二类震荡间断点时,可能存在原函数。

例2 ∫max{x3,x2,1}dx\\int{max\\{x^3,x^2,1\\}dx}max{x3,x2,1}dx
解:令f(x)=max{x3,x2,1},则f(x)={x2,x≤−11,−1<x<1x3,x≥1f(x)在(−∞,+∞)上连续∫f(x)={13x3+C1,x≤−1x+C,−1<x<114x4+C2,x≥1F(x)在点x=−1出连续,所以−13+C1=−1+C,则C1=−23+CF(x)在点x=1出连续,所以14+C2=1+C,则C2=34+C∫f(x)={13x3−23+C,x≤−1x+C,−1<x<114x4+34+C,x≥1解:令f(x)=max\\{x^3,x^2,1\\},则\\\\ f(x)= \\begin{cases} x^2,\\quad x\\le -1\\\\ 1,\\quad -1\\lt x\\lt1\\\\ x^3,\\quad x\\ge1 \\end{cases}\\\\ f(x)在(-\\infty,+\\infty)上连续\\\\ \\int{f(x)}= \\begin{cases} \\frac{1}{3}x^3+C_1,\\quad x\\le -1\\\\ x+C,\\quad -1\\lt x\\lt1\\\\ \\frac{1}{4}x^4+C_2,\\quad x\\ge1 \\end{cases}\\\\ F(x)在点x=-1出连续,所以-\\frac{1}{3}+C_1=-1+C,则C_1=-\\frac{2}{3}+C\\\\ F(x)在点x=1出连续,所以\\frac{1}{4}+C_2=1+C,则C_2=\\frac{3}{4}+C\\\\ \\int{f(x)}= \\begin{cases} \\frac{1}{3}x^3-\\frac{2}{3}+C,\\quad x\\le -1\\\\ x+C,\\quad -1\\lt x\\lt1\\\\ \\frac{1}{4}x^4+\\frac{3}{4}+C,\\quad x\\ge1 \\end{cases}\\\\ 解:令f(x)=max{x3,x2,1},f(x)=x2,x11,1<x<1x3,x1f(x)(,+)上连续f(x)=31x3+C1,x1x+C,1<x<141x4+C2,x1F(x)在点x=1出连续,所以31+C1=1+C,C1=32+CF(x)在点x=1出连续,所以41+C2=1+C,C2=43+Cf(x)=31x332+C,x1x+C,1<x<141x4+43+C,x1
总结:分段函数求积分

  1. 确定在分段点连续
  2. 求分段积分
  3. 统一常数

例3 证明:函数arcsin⁡(2x−1),arccos⁡(1−2x),arctan⁡x1−x都是1x−x2\\arcsin(2x-1),\\arccos(1-2x),\\arctan\\sqrt{\\frac{x}{1-x}}都是\\frac{1}{\\sqrt{x-x^2}}arcsin(2x1),arccos(12x),arctan1xx都是xx21的原函数
证明:通过原函数求导函数即可[arcsin⁡(2x−1)]′=11−(2x−1)2⋅2=1x−x2[arccos⁡(1−2x)]′=−11−(1−2x)2⋅−2=1x−x2[arctan⁡x1−x]′=11+x1−x⋅(x1−x)′=1x−x2证明:通过原函数求导函数即可\\\\ [\\arcsin(2x-1)]^{'}=\\frac{1}{\\sqrt{1-(2x-1)^2}}\\cdot2=\\frac{1}{\\sqrt{x-x^2}}\\\\ [\\arccos(1-2x)]^{'}=-\\frac{1}{\\sqrt{1-(1-2x)^2}}\\cdot-2=\\frac{1}{\\sqrt{x-x^2}}\\\\ [\\arctan\\sqrt{\\frac{x}{1-x}}]^{'}=\\frac{1}{1+\\frac{x}{1-x}}\\cdot(\\sqrt{\\frac{x}{1-x}})^{'}=\\frac{1}{\\sqrt{x-x^2}} 证明:通过原函数求导函数即可[arcsin(2x1)]=1(2x1)212=xx21[arccos(12x)]=1(12x)212=xx21[arctan1xx]=1+1xx1(1xx)=xx21

2 直接积分法-基本积分公式

例1 ∫x41+x2dx\\int{\\frac{x^4}{1+x^2}dx}1+x2x4dx

多项式除法
解:∫x41+x2dx=∫(x2−1+11+x2)dx=13x3−x+arctan⁡x+C解:\\int{\\frac{x^4}{1+x^2}dx}=\\int{(x^2-1+\\frac{1}{1+x^2})dx}\\\\ =\\frac{1}{3}x^3-x+\\arctan x+C 解:1+x2x4dx=(x21+1+x21)dx=31x3x+arctanx+C
例2 求∫1x8(1+x2)dx\\int{\\frac{1}{x^8(1+x^2)}dx}x8(1+x2)1dx

高次多项式与低次多项式+常数乘积
解:∫1x8(1+x2)dx=∫1−x8+x8x8(1+x2)dx=∫(1+x4)(1−x2)x8dx+∫11+x2dx=1x−13x3+15x5−17x7+arctan⁡x+C解:\\int{\\frac{1}{x^8(1+x^2)}dx}=\\int{\\frac{1-x^8+x^8}{x^8(1+x^2)}dx}\\\\ =\\int{\\frac{(1+x^4)(1-x^2)}{x^8}dx}+\\int{\\frac{1}{1+x^2}dx}\\\\ =\\frac{1}{x}-\\frac{1}{3x^3}+\\frac{1}{5x^5}-\\frac{1}{7x^7}+\\arctan x+C 解:x8(1+x2)1dx=x8(1+x2)1x8+x8dx=x8(1+x4)(1x2)dx+1+x21dx=x13x31+5x517x71+arctanx+C
例3 求∫tan⁡2xdx\\int{\\tan^2xdx}tan2xdx
解:∫tan⁡2xdx=∫(sec⁡2x−1)dx=tan⁡x−x+C解:\\int{\\tan^2xdx}=\\int{(\\sec^2x-1)dx}=\\tan x-x+C 解:tan2xdx=(sec2x1)dx=tanxx+C
例4 求∫11+cos⁡2xdx\\int{\\frac{1}{1+\\cos2x}dx}1+cos2x1dx
解:∫11+cos⁡2xdx=∫12cos⁡2xdx=12tan⁡x+C解:\\int{\\frac{1}{1+\\cos2x}dx}=\\int{\\frac{1}{2\\cos^2x}dx}\\\\ =\\frac{1}{2}\\tan x+C 解:1+cos2x1dx=2cos2x1dx=21tanx+C
例5 求∫1sin⁡2xcos⁡2xdx\\int{\\frac{1}{\\sin^2x\\cos^2x}dx}sin2xcos2x1dx
解:∫1sin⁡2xcos⁡2xdx=∫sin⁡2x+cos⁡2xsin⁡2xcos⁡2xdx=∫sec⁡2xdx+∫csc⁡2xdx=tan⁡x−cot⁡x+C解:\\int{\\frac{1}{\\sin^2x\\cos^2x}dx}=\\int{\\frac{\\sin^2x+\\cos^2x}{\\sin^2x\\cos^2x}dx}\\\\ =\\int{\\sec^2xdx}+\\int{\\csc^2xdx}=\\tan x-\\cot x+C :sin2xcos2x1dx=sin2xcos2xsin2x+cos2xdx=sec2xdx+csc2xdx=tanxcotx+C

3 第一换元法-凑微分形式法

∫{f[g(x)]g′(x)dx}=[∫f(t)dt]t=g(x)\\int{\\{f[g(x)]g^{'}(x)dx\\}}=[\\int{f(t)dt}]_{t=g(x)}{f[g(x)]g(x)dx}=[f(t)dt]t=g(x)

常见凑微分公式:

  • ∫f(ax+b)dx=1a∫f(ax+b)d(ax+b)\\int{f(ax+b)dx}=\\frac{1}{a}\\int{f(ax+b)d(ax+b)}f(ax+b)dx=a1f(ax+b)d(ax+b)

  • ∫f(ex)exdx=∫f(ex)dex\\int{f(e^x)e^xdx}=\\int{f(e^x)de^x}f(ex)exdx=f(ex)dex ∫f(ax)axdx=1ln⁡a∫f(ax)dax\\quad \\int{f(a^x)a^xdx}=\\frac{1}{\\ln a}\\int{f(a^x)da^x}f(ax)axdx=lna1f(ax)dax

  • ∫f(xμ)xμ−1dx=1μ∫f(xμ)d(xμ)\\int{f(x^\\mu)x^{\\mu-1}dx}=\\frac{1}{\\mu}\\int{f(x^\\mu)d(x^\\mu)}f(xμ)xμ1dx=μ1f(xμ)d(xμ)

  • ∫f(1x)1x2dx=−∫f(1x)d(1x)\\int{f(\\frac{1}{x})\\frac{1}{x^2}dx}=-\\int{f(\\frac{1}{x})d(\\frac{1}{x}})f(x1)x21dx=f(x1)d(x1)

  • ∫f(x)1xdx=2∫f(x)d(x)\\int{f(\\sqrt{x})\\frac{1}{\\sqrt{x}}dx}=2\\int{f(\\sqrt{x})d(\\sqrt{x})}f(x)x1dx=2f(x)d(x)

  • ∫f(ln⁡x)1xdx=∫f(ln⁡x)d(ln⁡x)∫f(xln⁡x)(1+ln⁡x)dx=∫f(xln⁡x)d(xln⁡x)\\int{f(\\ln x)\\frac{1}{x}dx}=\\int{f(\\ln x)d(\\ln x)}\\quad \\int{f(x\\ln x)(1+\\ln x)dx}=\\int{f(x\\ln x)d(x\\ln x)}f(lnx)x1dx=f(lnx)d(lnx)f(xlnx)(1+lnx)dx=f(xlnx)d(xlnx)

  • 三角函数凑微分

    • ∫f(sin⁡x)cos⁡xdx=∫f(sin⁡x)d(sin⁡x)\\int{f(\\sin x)\\cos xdx}=\\int{f(\\sin x)d(\\sin x)}f(sinx)cosxdx=f(sinx)d(sinx)
    • ∫f(cos⁡x)sin⁡xdx=−∫f(cos⁡x)d(cos⁡x)\\int{f(\\cos x)\\sin xdx}=-\\int{f(\\cos x)d(\\cos x)}f(cosx)sinxdx=f(cosx)d(cosx)
    • ∫f(tan⁡x)sec⁡2xdx=∫f(tan⁡x)d(tan⁡x)\\int{f(\\tan x)\\sec^2xdx}=\\int{f(\\tan x)d(\\tan x)}f(tanx)sec2xdx=f(tanx)d(tanx)
    • ∫f(cot⁡x)csc⁡2xdx=−∫f(cot⁡x)d(cot⁡x)\\int{f(\\cot x)\\csc^2xdx}=-\\int{f(\\cot x)d(\\cot x)}f(cotx)csc2xdx=f(cotx)d(cotx)
    • ∫f(sec⁡x)sec⁡xtan⁡xdx=∫f(sec⁡x)d(sec⁡x)\\int{f(\\sec x)\\sec x\\tan xdx}=\\int{f(\\sec x)d(\\sec x)}f(secx)secxtanxdx=f(secx)d(secx)
    • ∫f(csc⁡x)csc⁡xcot⁡xdx=−∫f(csc⁡x)d(csc⁡x)\\int{f(\\csc x)\\csc x\\cot xdx}=-\\int{f(\\csc x)d(\\csc x)}f(cscx)cscxcotxdx=f(cscx)d(cscx)
  • 反三角函数

    • ∫f(arctan⁡x)11+x2dx=∫f(arctan⁡x)d(arctan⁡x)\\int{f(\\arctan x)\\frac{1}{1+x^2}dx}=\\int{f(\\arctan x)d(\\arctan x)}f(arctanx)1+x21dx=f(arctanx)d(arctanx)
    • ∫f(arccotx)11+x2dx=−∫f(arccotx)d(arccotx)\\int{f(arccot x)\\frac{1}{1+x^2}dx}=-\\int{f(arccot x)d(arccot x)}f(arccotx)1+x21dx=f(arccotx)d(arccotx)
    • ∫f(arcsin⁡x)11−x2dx=∫f(arcsin⁡x)d(arcsin⁡x)\\int{f(\\arcsin x)\\frac{1}{\\sqrt{1-x^2}}dx}=\\int{f(\\arcsin x)d(\\arcsin x)}f(arcsinx)1x21dx=f(arcsinx)d(arcsinx)
    • ∫f(arccos⁡x)11−x2dx=−∫f(arccos⁡x)d(arccos⁡x)\\int{f(\\arccos x)\\frac{1}{\\sqrt{1-x^2}}dx}=-\\int{f(\\arccos x)d(\\arccos x)}f(arccosx)1x21dx=f(arccosx)d(arccosx)
  • ∫f(x+1x)(1−1x2)dx=∫f(x+1x)d(x+1x)∫f(x−1x)(1+1x2)dx=∫f(x−1x)d(x−1x)\\int{f(x+\\frac{1}{x})(1-\\frac{1}{x^2})dx}=\\int{f(x+\\frac{1}{x})d(x+\\frac{1}{x})}\\quad \\int{f(x-\\frac{1}{x})(1+\\frac{1}{x^2})dx}=\\int{f(x-\\frac{1}{x})d(x-\\frac{1}{x})}f(x+x1)(1x21)dx=f(x+x1)d(x+x1)f(xx1)(1+x21)dx=f(xx1)d(xx1)

例1 ∫tan⁡5xsec3xdx\\int{\\tan^5xsec^3xdx}tan5xsec3xdx
解:∫tan⁡5xsec3xdx=∫(sec2x−1)2sec2xd(secx)=∫(sec6x−2sec4x+sec2x)d(secx)=17sec7x−25sec5x+13sec3x+C解:\\int{\\tan^5xsec^3xdx}=\\int{(sec^2x-1)^2sec^2xd(secx)}\\\\ =\\int{(sec^6x-2sec^4x+sec^2x)d(secx)}=\\frac{1}{7}sec^7x-\\frac{2}{5}sec^5x+\\frac{1}{3}sec^3x+C 解:tan5xsec3xdx=(sec2x1)2sec2xd(secx)=(sec6x2sec4x+sec2x)d(secx)=71sec7x52sec5x+31sec3x+C
例2 ∫ln⁡(1+x)−ln⁡xx(1+x)dx\\int{\\frac{\\ln(1+x)-\\ln x}{x(1+x)}dx}x(1+x)ln(1+x)lnxdx
解:∫ln⁡(1+x)−ln⁡xx(1+x)dx=−∫[ln⁡(1+x)−ln⁡x]d[ln⁡(1+x)−ln⁡x]=−12[ln⁡(1+x)−ln⁡x]2+C解:\\int{\\frac{\\ln(1+x)-\\ln x}{x(1+x)}dx}=-\\int{[\\ln(1+x)-\\ln x]d[\\ln(1+x)-\\ln x]}\\\\ =-\\frac{1}{2}[\\ln(1+x)-\\ln x]^2+C 解:x(1+x)ln(1+x)lnxdx=[ln(1+x)lnx]d[ln(1+x)lnx]=21[ln(1+x)lnx]2+C
例3 ∫(1+2x2)ex22−3xex2dx\\int{\\frac{(1+2x^2)e^{x^2}}{2-3xe^{x^2}}dx}23xex2(1+2x2)ex2dx
解:∫(1+2x2)ex22−3xex2dx=−13∫12−3xex2d(2−3xex2)=−13ln⁡∣2−3xex2∣+C解:\\int{\\frac{(1+2x^2)e^{x^2}}{2-3xe^{x^2}}dx}=-\\frac{1}{3}\\int{\\frac{1}{2-3xe^{x^2}}d(2-3xe^{x^2})}=-\\frac{1}{3}\\ln|2-3xe^{x^2}|+C 解:23xex2(1+2x2)ex2dx=3123xex21d(23xex2)=31ln∣23xex2+C
例4 ∫earctan⁡1+x(2+x)1+xdx\\int{\\frac{e^{\\arctan\\sqrt{1+x}}}{(2+x)\\sqrt{1+x}}dx}(2+x)1+xearctan1+xdx
解:∫earctan⁡1+x(2+x)1+xdx=2∫earctan⁡1+xd(arctan⁡1+x)=2earctan⁡1+x+C解:\\int{\\frac{e^{\\arctan\\sqrt{1+x}}}{(2+x)\\sqrt{1+x}}dx}=2\\int{e^{\\arctan\\sqrt{1+x}}d(\\arctan\\sqrt{1+x})}\\\\ =2e^{\\arctan\\sqrt{1+x}}+C 解:(2+x)1+xearctan1+xdx=2earctan1+xd(arctan1+x)=2earctan1+x+C
例5 ∫ln⁡tan⁡x2sin⁡xdx\\int{\\frac{\\ln\\tan\\frac{x}{2}}{\\sin x}dx}sinxlntan2xdx
解:∫ln⁡tan⁡x2sin⁡xdx=∫ln⁡tan⁡x2d(ln⁡tan⁡x2)=12ln⁡2tan⁡x2+C解:\\int{\\frac{\\ln\\tan\\frac{x}{2}}{\\sin x}dx}=\\int{\\ln\\tan\\frac{x}{2}d(\\ln\\tan\\frac{x}{2})}\\\\ =\\frac{1}{2}\\ln^2\\tan\\frac{x}{2}+C 解:sinxlntan2xdx=lntan2xd(lntan2x)=21ln2tan2x+C

4 第二类换元法

∫f(x)dx=[∫[f(ϕ(t))]ϕ′(t)dt]t=ϕ−1(x)\\int{f(x)dx}=[\\int{[f(\\phi(t))]\\phi^{'}(t)dt}]_{t=\\phi^{-1}(x)}f(x)dx=[[f(ϕ(t))]ϕ(t)dt]t=ϕ1(x)

  • 三大换元
    1. 三角换元
      • 被积函数含有a2−x2\\sqrt{a^2-x^2}a2x2:令x=asin⁡tx=a\\sin tx=asint
      • 被积函数含有x2+a2\\sqrt{x^2+a^2}x2+a2:令x=atan⁡tx=a\\tan tx=atant
      • 被积函数含有x2−a2\\sqrt{x^2-a^2}x2a2:令x=asec⁡tx=a\\sec tx=asect
      • 当被积函数含有(x2+a2)n(x^2+a^2)^n(x2+a2)n也考虑x=atan⁡tx=a\\tan tx=atant
      • 当被积函数含有(x2−a2)n(x^2-a^2)^n(x2a2)n也考虑x=asec⁡tx=a\\sec tx=asect
    2. 根式代换
      • 被积函数含有ax+bcx+dn:令ax+bcx+dn=t\\sqrt[n]{\\frac{ax+b}{cx+d}}:令\\sqrt[n]{\\frac{ax+b}{cx+d}}=tncx+dax+b:ncx+dax+b=t
      • 被积函数含有ax+bn:令ax+bn=t\\sqrt[n]{ax+b}:令\\sqrt[n]{ax+b}=tnax+b:nax+b=t
      • 被积函数含有ax+bn,ax+bm:令ax+bk=t,k为m,n的最小公倍数\\sqrt[n]{ax+b},\\sqrt[m]{ax+b}:令\\sqrt[k]{ax+b}=t,k为m,n的最小公倍数nax+bmax+b:kax+b=t,kmn的最小公倍数
    3. 倒代换
      1. 当分母方次高于分子方次,可以考虑倒代换。

例1 求∫1(1+x2)2dx\\int{\\frac{1}{(1+x^2)^2}dx}(1+x2)21dx
解:解法一.∫1(1+x2)2dx=∫1+x2−x2(1+x2)2dx=arctan⁡x+12∫xd(11+x2)==arctan⁡x+12x1+x2−12∫(11+x2)dx=12arctan⁡x+x2(1+x2)+C解法二.令x=tan⁡x∫1(1+x2)2dx=∫1(1+tan⁡2x)2dtan⁡x=∫cos⁡2tdt=14sin⁡tcos⁡t−12t+C=12arctan⁡x+x2(1+x2)+C解:解法一.\\int{\\frac{1}{(1+x^2)^2}dx}=\\int{\\frac{1+x^2-x^2}{(1+x^2)^2}dx}\\\\ =\\arctan x+\\frac{1}{2}\\int{xd(\\frac{1}{1+x^2})}=\\\\ =\\arctan x+\\frac{1}{2}\\frac{x}{1+x^2}-\\frac{1}{2}\\int{(\\frac{1}{1+x^2})dx}\\\\ =\\frac{1}{2}\\arctan x+\\frac{x}{2(1+x^2)}+C\\\\ 解法二.令x=\\tan x\\\\ \\int{\\frac{1}{(1+x^2)^2}dx}=\\int{\\frac{1}{(1+\\tan^2x)^2}d\\tan x}\\\\ =\\int{\\cos^2tdt}=\\frac{1}{4}\\sin t\\cos t-\\frac{1}{2}t+C =\\frac{1}{2}\\arctan x+\\frac{x}{2(1+x^2)}+C 解:解法一.(1+x2)21dx=(1+x2)21+x2x2dx=arctanx+21xd(1+x21)==arctanx+211+x2x21(1+x21)dx=21arctanx+2(1+x2)x+C解法二.x=tanx(1+x2)21dx=(1+tan2x)21dtanx=cos2tdt=41sintcost21t+C=21arctanx+2(1+x2)x+C
例2 求∫1(ax2+b)ndx,n>1,a>0\\int{\\frac{1}{(ax^2+b)^n}dx},n>1,a>0(ax2+b)n1dx,n>1,a>0
解:∫1(ax2+b)ndx=1b∫1(ax2+b)n−1dx+12b(n−1)∫xd1(ax2+b)n−1=2bn−2b−22b(n−1)∫1(ax2+b)n−1dx+x2b(n−1)(x2+1)n−1解:\\int{\\frac{1}{(ax^2+b)^n}dx}=\\frac{1}{b}\\int{\\frac{1}{(ax^2+b)^{n-1}}dx}+\\frac{1}{2b(n-1)}\\int{xd{\\frac{1}{(ax^2+b)^{n-1}}}}\\\\ =\\frac{2bn-2b-2}{2b(n-1)}\\int{\\frac{1}{(ax^2+b)^{n-1}}dx}+\\frac{x}{2b(n-1)(x^2+1)^{n-1}} 解:(ax2+b)n1dx=b1(ax2+b)n11dx+2b(n1)1xd(ax2+b)n11=2b(n1)2bn2b2(ax2+b)n11dx+2b(n1)(x2+1)n1x

例3 求∫1x+x3dx\\int{\\frac{1}{\\sqrt{x}+\\sqrt[3]{x}}dx}x+3x1dx
解:令x6=t,则x=t6,dx=6t5∫1x+x3dx=∫6t5t3+t2dt=∫6(t2−t+1−1t+1)dt=2t3−3t2+6t−6ln⁡∣t+1∣+C=2x12−3x13+6x16−6ln⁡∣x16+1∣+C解:令\\sqrt[6]{x}=t,则x=t^6,dx=6t^5\\\\ \\int{\\frac{1}{\\sqrt{x}+\\sqrt[3]{x}}dx}=\\int{\\frac{6t^5}{t^3+t^2}dt}\\\\ =\\int{6(t^2-t+1-\\frac{1}{t+1})dt}=2t^3-3t^2+6t-6\\ln|t+1|+C\\\\ =2x^{\\frac{1}{2}}-3x^{\\frac{1}{3}}+6x^{\\frac{1}{6}}-6\\ln|x^{\\frac{1}{6}}+1|+C 解:令6x=t,x=t6,dx=6t5x+3x1dx=t3+t26t5dt=6(t2t+1t+11)dt=2t33t2+6t6lnt+1∣+C=2x213x31+6x616lnx61+1∣+C
例4 求∫11+x+x+1dx\\int{\\frac{1}{1+\\sqrt{x}+\\sqrt{x+1}}dx}1+x+x+11dx
解:令t=x+x+1,x=14(t−1t)2dt=12(t−1t)(1+1t2)dt∫11+x+x+1dx=12∫t−1t3dt=−12t+14t2+C=14(x+1−x)(x+1−x−2)+C解:令t=\\sqrt{x}+\\sqrt{x+1},x=\\frac{1}{4}(t-\\frac{1}{t})^2\\\\ dt=\\frac{1}{2}(t-\\frac{1}{t})(1+\\frac{1}{t^2})dt\\\\ \\int{\\frac{1}{1+\\sqrt{x}+\\sqrt{x+1}}dx}=\\frac{1}{2}\\int{\\frac{t-1}{t^3}dt}\\\\ =-\\frac{1}{2t}+\\frac{1}{4t^2}+C=\\frac{1}{4}(\\sqrt{x+1}-\\sqrt{x})(\\sqrt{x+1}-\\sqrt{x}-2)+C 解:令t=x+x+1,x=41(tt1)2dt=21(tt1)(1+t21)dt1+x+x+11dx=21t3t1dt=2t1+4t21+C=41(x+1x)(x+1x2)+C
例5求∫1(1+x)1−x2dx\\int{\\frac{1}{(1+x)\\sqrt{1-x^2}}dx}(1+x)1x21dx
解:令x=sin⁡t,dx=cos⁡t∫1(1+x)1−x2dx=∫11+sin⁡tdt=∫(sec⁡2t−tan⁡tsec⁡t)dt=tan⁡t−sec⁡t+C=x−11−x2+C解:令x=\\sin t,dx=\\cos t\\\\ \\int{\\frac{1}{(1+x)\\sqrt{1-x^2}}dx}=\\int{\\frac{1}{1+\\sin t}dt}\\\\ =\\int{(\\sec^2t-\\tan t\\sec t)dt}=\\tan t-\\sec t+C\\\\ =\\frac{x-1}{\\sqrt{1-x^2}}+C 解:令x=sint,dx=cost(1+x)1x21dx=1+sint1dt=(sec2ttantsect)dt=tantsect+C=1x2x1+C
例6 ∫1x(x6+4)dx\\int{\\frac{1}{x(x^6+4)}dx}x(x6+4)1dx
解:∫1x(x6+4)dx=14∫4+x6−x6x(x6+4)dx=124ln⁡x6x6+4+C解:\\int{\\frac{1}{x(x^6+4)}dx}=\\frac{1}{4}\\int{\\frac{4+x^6-x^6}{x(x^6+4)}dx}\\\\ =\\frac{1}{24}\\ln\\frac{x^6}{x^6+4}+C 解:x(x6+4)1dx=41x(x6+4)4+x6x6dx=241lnx6+4x6+C

∫1x(axn+b)dx=1bnln⁡∣xnaxn+b∣,bn≠0\\int{\\frac{1}{x(ax^n+b)}dx}=\\frac{1}{bn}\\ln|\\frac{x^n}{ax^n+b}|,bn\\not=0x(axn+b)1dx=bn1lnaxn+bxn,bn=0

例7 求∫11+ex2+ex3+ex6dx\\int{\\frac{1}{1+e^{\\frac{x}{2}}+e^{\\frac{x}{3}}+e^{\\frac{x}{6}}}dx}1+e2x+e3x+e6x1dx
解:令ex6=t,x=6ln⁡t,dx=6tdt原式=∫11+t3+t2+t⋅6tdt=∫6(t2+1)(t+1)tdt6(t2+1)(t+1)t=at+bt+1+cx+dt2+1计算的a=6,b=−3,c=−3,d=−3上式=∫(6t−3t+1−3t+1t2+1)dt=6ln⁡∣t∣−3ln⁡∣t+1∣−32ln⁡∣t2+1∣−3arctan⁡t+C=x−3ln⁡∣ex6+1∣−32ln⁡∣ex3+1∣−3arctan⁡ex6+C解:令e^{\\frac{x}{6}}=t,x=6\\ln t,dx=\\frac{6}{t}dt\\\\ 原式=\\int{\\frac{1}{1+t^3+t^2+t}\\cdot\\frac{6}{t}dt}\\\\ =\\int{\\frac{6}{(t^2+1)(t+1)t}dt}\\\\ \\frac{6}{(t^2+1)(t+1)t}=\\frac{a}{t}+\\frac{b}{t+1}+\\frac{cx+d}{t^2+1}\\\\ 计算的a=6,b=-3,c=-3,d=-3\\\\ 上式=\\int{(\\frac{6}{t}-\\frac{3}{t+1}-3\\frac{t+1}{t^2+1})dt}\\\\ =6\\ln|t|-3\\ln|t+1|-\\frac{3}{2}\\ln|t^2+1|-3\\arctan t+C\\\\ =x-3\\ln|e^{\\frac{x}{6}}+1|-\\frac{3}{2}\\ln|e^{\\frac{x}{3}}+1|-3\\arctan e^{\\frac{x}{6}}+C 解:令e6x=t,x=6lnt,dx=t6dt原式=1+t3+t2+t1t6dt=(t2+1)(t+1)t6dt(t2+1)(t+1)t6=ta+t+1b+t2+1cx+d计算的a=6,b=3,c=3,d=3上式=(t6t+133t2+1t+1)dt=6lnt3lnt+1∣23lnt2+1∣3arctant+C=x3lne6x+1∣23lne3x+1∣3arctane6x+C

5 分部积分求不定积分

∫udv=vu−∫vdu\\int{udv}=vu-\\int{vdu}udv=vuvdu

分部积分原则:

  • ∫vdu比∫udv\\int{vdu}比\\int{udv}vduudv好求
  • 分部积分选u的优先级别:反,对,幂,指,三
  • 循环积分:关于于不定积分的方程

例1 求∫xsin⁡2xdx\\int{x\\sin^2xdx}xsin2xdx

分析:sin⁡2x\\sin^2xsin2x优先降幂
解:∫xsin⁡2xdx=∫x⋅1−cos⁡2x2dx=14x2−∫12xcos⁡2xdx=14x2−14∫xdsin⁡2x=14x2−14xsin⁡2x−18cos⁡2x+C解:\\int{x\\sin^2xdx}=\\int{x\\cdot\\frac{1-\\cos2x}{2}dx}\\\\ =\\frac{1}{4}x^2-\\int{\\frac{1}{2}x\\cos2xdx}=\\frac{1}{4}x^2-\\frac{1}{4}\\int{xd\\sin2x}\\\\ =\\frac{1}{4}x^2-\\frac{1}{4}x\\sin2x-\\frac{1}{8}\\cos2x+C 解:xsin2xdx=x21cos2xdx=41x221xcos2xdx=41x241xdsin2x=41x241xsin2x81cos2x+C
例2 求∫x2e2xex\\int{x^2e^{2x}}exx2e2xex
解:∫x2e2xdx=12∫x2de2x=12x2e2x−12∫e2xdx2=12x2e2x−12∫xde2x=12x2e2x−12xe2x+14e2x+C解:\\int{x^2e^{2x}}dx=\\frac{1}{2}\\int{x^2de^{2x}}\\\\ =\\frac{1}{2}x^2e^{2x}-\\frac{1}{2}\\int{e^{2x}dx^2}=\\frac{1}{2}x^2e^{2x}-\\frac{1}{2}\\int{xde^{2x}}\\\\ =\\frac{1}{2}x^2e^{2x}-\\frac{1}{2}xe^{2x}+\\frac{1}{4}e^{2x}+C 解:x2e2xdx=21x2de2x=21x2e2x21e2xdx2=21x2e2x21xde2x=21x2e2x21xe2x+41e2x+C

∫xmenxdx=1nxmenx−mn∫xm−1enxdx\\int{x^me^{nx}dx}=\\frac{1}{n}x^me^{nx}-\\frac{m}{n}\\int{x^{m-1}e^{nx}dx}xmenxdx=n1xmenxnmxm1enxdx

例3 求∫arctan⁡exe2xdx{\\int\\frac{\\arctan e^x}{e^{2x}}dx}e2xarctanexdx
解:∫arctan⁡exe2xdx=−12∫arctan⁡exde−2x=−12e−2xarctan⁡ex+12∫ex(1e2x−11+e2x)dx=−arctan⁡ex2e2x−12ex−12arctan⁡ex+C解:\\int{\\frac{\\arctan e^x}{e^{2x}}dx}=-\\frac{1}{2}\\int{\\arctan e^xde^{-2x}}\\\\ =-\\frac{1}{2}e^{-2x}\\arctan e^x+\\frac{1}{2}\\int{e^x(\\frac{1}{e^{2x}}-\\frac{1}{1+e^{2x}})dx}\\\\ =-\\frac{\\arctan e^x}{2e^{2x}}-\\frac{1}{2e^x}-\\frac{1}{2}\\arctan e^x+C 解:e2xarctanexdx=21arctanexde2x=21e2xarctanex+21ex(e2x11+e2x1)dx=2e2xarctanex2ex121arctanex+C
例4 求∫sec3xdx\\int{sec^3xdx}sec3xdx
解:∫sec3xdx=∫secxdtan⁡x=sec⁡xtan⁡x−∫tan⁡xdsec⁡x=sec⁡xtan⁡x−∫(sec⁡3x−sec⁡x)dx∫sec3x=12sec⁡xtan⁡x+12ln⁡∣sec⁡x+tan⁡x∣+C解:\\int{sec^3xdx=\\int{secxd\\tan x}}=\\sec x\\tan x-\\int{\\tan xd\\sec x}\\\\ =\\sec x\\tan x-\\int{(\\sec^3x-\\sec x)dx}\\\\ \\int{sec^3x}=\\frac{1}{2}\\sec x\\tan x+\\frac{1}{2}\\ln|\\sec x+\\tan x|+C 解:sec3xdx=secxdtanx=secxtanxtanxdsecx=secxtanx(sec3xsecx)dxsec3x=21secxtanx+21lnsecx+tanx+C
例5 f(x)f(x)f(x)的一个原函数为xcos⁡xx\\cos xxcosx,求∫x⋅f′(x)dx\\int{x\\cdot f^{'}(x)dx}xf(x)dx
解:由已知得,∫f(x)dx=xcos⁡x+Cf(x)=(xcos⁡x)′=cos⁡x−xsin⁡x∫x⋅f′(x)dx=∫xdf(x)=xf(x)−∫f(x)dx=x(cos⁡x−xsin⁡x)−xcos⁡x+C=−x2sin⁡x+C解:由已知得,\\int{f(x)dx}=x\\cos x+C\\\\ f(x)=(x\\cos x)^{'}=\\cos x-x\\sin x\\\\ \\int{x\\cdot f^{'}(x)dx}=\\int{xdf(x)}=xf(x)-\\int{f(x)dx}\\\\ =x(\\cos x-x\\sin x)-x\\cos x+C=-x^2\\sin x+C 解:由已知得,f(x)dx=xcosx+Cf(x)=(xcosx)=cosxxsinxxf(x)dx=xdf(x)=xf(x)f(x)dx=x(cosxxsinx)xcosx+C=x2sinx+C
例6 设F(x)是f(x)F(x)是f(x)F(x)f(x) 的原函数, 且当x≥0时x\\ge0时x0f(x)⋅F(x)=xex2(1+x)2f(x)\\cdot F(x)=\\frac{xe^x}{2(1+x)^2}f(x)F(x)=2(1+x)2xex,已知F(0)=1,F(x)>0F(0)=1,F(x)\\gt0F(0)=1,F(x)>0.求f(x)f(x)f(x)
解:有已知得F′(x)=f(x)f(x)⋅F(x)=xex2(1+x)2两边求积分∫f(x)⋅F(x)dx=∫xex2(1+x)2dxF2(x)=−∫xexd(11+x)=ex1+x+C因为F(0)=1,所以C=0因为x≥0时,F(x)>0,所以F(x)=ex1+xf(x)=F′(x)=(ex1+x)′=121ex1+x⋅xex(1+x2)=xe122(1+x)32解:有已知得 F^{'}(x)=f(x)\\\\ f(x)\\cdot F(x)=\\frac{xe^x}{2(1+x)^2}两边求积分\\\\ \\int{f(x)\\cdot F(x)dx}=\\int{\\frac{xe^x}{2(1+x)^2}}dx\\\\ F^2(x)=-\\int{xe^xd(\\frac{1}{1+x})}=\\frac{e^x}{1+x}+C\\\\ 因为F(0)=1,所以C=0\\\\ 因为x\\ge0时,F(x)\\gt0,所以F(x)=\\sqrt{\\frac{e^x}{1+x}}\\\\ f(x)=F^{'}(x)=(\\sqrt{\\frac{e^x}{1+x}})^{'}=\\frac{1}{2}\\frac{1}{\\sqrt{\\frac{e^x}{1+x}}}\\cdot\\frac{xe^x}{(1+x^2)}\\\\ =\\frac{xe^{\\frac{1}{2}}}{2(1+x)^{\\frac{3}{2}}} 解:有已知得F(x)=f(x)f(x)F(x)=2(1+x)2xex两边求积分f(x)F(x)dx=2(1+x)2xexdxF2(x)=xexd(1+x1)=1+xex+C因为F(0)=1,所以C=0因为x0时,F(x)>0,所以F(x)=1+xexf(x)=F(x)=(1+xex)=211+xex1(1+x2)xex=2(1+x)23xe21

6 表格法积分

函数u(x),v(x),n+1阶可导u(x),v(x), n+1阶可导u(x),v(x),n+1阶可导
∫uv(n+1)dx反复使用分部积分可得∫uv(n+1)dx=∫udv(n)=uv(n)−∫u′v(n)dx=uv(n)−u′v(n−1)+∫u′′v(n−1)dx=uv(n)−u′v(n−1)+u′′v(n−2)−∫u′′′v(n−2)dx=uv(n)−u′v(n−1)+u′′v(n−2)+⋯+(−1)nu(n)v+(−1)n+1∫u(n+1)vdx\\int{uv^{(n+1)}dx}反复使用分部积分可得\\\\ \\int{uv^{(n+1)}dx}=\\int{udv^{(n)}}=uv^{(n)}-\\int{u^{'}v^{(n)}dx}\\\\ =uv^{(n)}-u^{'}v^{(n-1)}+\\int{u^{''}v^{(n-1)}dx}\\\\ =uv^{(n)}-u^{'}v^{(n-1)}+u^{''}v^{(n-2)}-\\int{u^{'''}v^{(n-2)}dx}\\\\ =uv^{(n)}-u^{'}v^{(n-1)}+u^{''}v^{(n-2)}+\\cdots+(-1)^nu^{(n)}v+(-1)^{n+1}\\int{u^{(n+1)}vdx} uv(n+1)dx反复使用分部积分可得uv(n+1)dx=udv(n)=uv(n)uv(n)dx=uv(n)uv(n1)+u′′v(n1)dx=uv(n)uv(n1)+u′′v(n2)u′′′v(n2)dx=uv(n)uv(n1)+u′′v(n2)++(1)nu(n)v+(1)n+1u(n+1)vdx
表格如下:

在这里插入图片描述

例1 求∫(x3+2x)sin⁡xdx\\int{(x^3+2x)\\sin xdx}(x3+2x)sinxdx
解:∫(x3+2x)sin⁡xdx=−(x3+2x)cos⁡x+(3x2+2)sin⁡x+6xcos⁡x−6sin⁡x+C=(3x2−4)sin⁡x−(x3−4x)cos⁡x+C解:\\int{(x^3+2x)\\sin xdx}=-(x^3+2x)\\cos x+(3x^2+2)\\sin x+6x\\cos x-6\\sin x+C\\\\ =(3x^2-4)\\sin x-(x^3-4x)\\cos x+C 解:(x3+2x)sinxdx=(x3+2x)cosx+(3x2+2)sinx+6xcosx6sinx+C=(3x24)sinx(x34x)cosx+C
例2 ∫e3xsin⁡2xdx\\int{e^{3x}\\sin2xdx}e3xsin2xdx
解:∫e3xsin⁡2xdx=−12e3xcos⁡2x+34e3xsin⁡2x−∫94e3xsin⁡2xdx∫e3xsin⁡2xdx=−213e3xcos⁡2x+313e3xsin⁡2x+C解:\\int{e^{3x}\\sin2xdx}=-\\frac{1}{2}e^{3x}\\cos2x+\\frac{3}{4}e^{3x}\\sin2x-\\int{\\frac{9}{4}e^{3x}\\sin2xdx}\\\\ \\int{e^{3x}\\sin2xdx}=-\\frac{2}{13}e^{3x}\\cos2x+\\frac{3}{13}e^{3x}\\sin2x+C 解:e3xsin2xdx=21e3xcos2x+43e3xsin2x49e3xsin2xdxe3xsin2xdx=132e3xcos2x+133e3xsin2x+C

7 有理函数求积分

例1 求∫x3+1x(x−1)3dx\\int{\\frac{x^3+1}{x(x-1)^3}dx}x(x1)3x3+1dx
解:x3+1x(x−1)3=ax+b(x−1)3+c(x−1)2+dx−1通分得,a(x−1)3+bx+cx(x−1)+dx(x−1)2=x3+1计算得a=−1,b=2,c=1,d=2,所以∫x3+1x(x−1)3=∫(−1x+2x−1+1(x−1)2+2(x−1)3)dx=−ln⁡∣x∣+2ln⁡∣x−1∣−1x−1−1(x−1)2+C解:{\\frac{x^3+1}{x(x-1)^3}}=\\frac{a}{x}+\\frac{b}{(x-1)^3}+\\frac{c}{(x-1)^2}+\\frac{d}{x-1}\\\\ 通分得,a(x-1)^3+bx+cx(x-1)+dx(x-1)^2=x^3+1\\\\ 计算得a=-1,b=2,c=1,d=2,所以\\\\ \\int{\\frac{x^3+1}{x(x-1)^3}}=\\int{(\\frac{-1}{x}+\\frac{2}{x-1}+\\frac{1}{(x-1)^2}+\\frac{2}{(x-1)^3})dx}=-\\ln|x|+2\\ln|x-1|-\\frac{1}{x-1}-\\frac{1}{(x-1)^2}+C 解:x(x1)3x3+1=xa+(x1)3b+(x1)2c+x1d通分得,a(x1)3+bx+cx(x1)+dx(x1)2=x3+1计算得a=1,b=2,c=1,d=2,所以x(x1)3x3+1=(x1+x12+(x1)21+(x1)32)dx=lnx+2lnx1∣x11(x1)21+C
例2 求∫2x+2(x−1)(x2+1)2dx\\int{\\frac{2x+2}{(x-1)(x^2+1)^2}dx}(x1)(x2+1)22x+2dx
解:2x+2(x−1)(x2+1)2=ax−1+b1x+c1x2+1+b2x+c2(x2+1)2通分得,a(x2+1)2+(b1x+c1)(x−1)(x2+1)+(b2x+c2)(x−1)=2x+2计算得,a=1,b1=−1,c1=−1,b2=−2,c2=0∫2x+2(x−1)(x2+1)2=∫(1x−1−x+1x2+1−2x(x2+1)2)dx=ln⁡∣x−1∣−12ln⁡∣x2+1∣−arctan⁡x+1x2+1+C解:\\frac{2x+2}{(x-1)(x^2+1)^2}=\\frac{a}{x-1}+\\frac{b_1x+c_1}{x^2+1}+\\frac{b_2x+c_2}{(x^2+1)^2}\\\\ 通分得,a(x^2+1)^2+(b_1x+c_1)(x-1)(x^2+1)+(b_2x+c_2)(x-1)=2x+2\\\\ 计算得,a=1,b_1=-1,c_1=-1,b_2=-2,c_2=0\\\\ \\int{\\frac{2x+2}{(x-1)(x^2+1)^2}}=\\int{(\\frac{1}{x-1}-\\frac{x+1}{x^2+1}-\\frac{2x}{(x^2+1)^2})dx}\\\\ =\\ln|x-1|-\\frac{1}{2}\\ln|x^2+1|-\\arctan x+\\frac{1}{x^2+1}+C 解:(x1)(x2+1)22x+2=x1a+x2+1b1x+c1+(x2+1)2b2x+c2通分得,a(x2+1)2+(b1x+c1)(x1)(x2+1)+(b2x+c2)(x1)=2x+2计算得,a=1,b1=1,c1=1,b2=2,c2=0(x1)(x2+1)22x+2=(x11x2+1x+1(x2+1)22x)dx=lnx1∣21lnx2+1∣arctanx+x2+11+C
例3 求∫18−4sin⁡x+7cos⁡xdx\\int{\\frac{1}{8-4\\sin x+7\\cos x}dx}84sinx+7cosx1dx
令tan⁡x2=t,x=2arctan⁡t,dx=21+t2∫18−4sin⁡x+7cos⁡xdx=∫18−42t1+t2+71−t21+t2⋅21+t2dt=∫(1t−5−1t−3)dt=ln⁡∣t−5t−3∣+C=ln⁡∣tan⁡x2−5tan⁡x2−3∣+C令\\tan\\frac{x}{2}=t,x=2\\arctan t,dx=\\frac{2}{1+t^2}\\\\ \\int{\\frac{1}{8-4\\sin x+7\\cos x}dx}=\\int{\\frac{1}{8-4\\frac{2t}{1+t^2}+7\\frac{1-t^2}{1+t^2}}\\cdot\\frac{2}{1+t^2}dt}\\\\ =\\int{(\\frac{1}{t-5}-\\frac{1}{t-3})dt}=\\ln|\\frac{t-5}{t-3}|+C =\\ln|\\frac{\\tan\\frac{x}{2}-5}{\\tan\\frac{x}{2}-3}|+C tan2x=t,x=2arctant,dx=1+t2284sinx+7cosx1dx=841+t22t+71+t21t211+t22dt=(t51t31)dt=lnt3t5+C=lntan2x3tan2x5+C

∫asin⁡x+bcos⁡xcsin⁡x+dcos⁡xdx=∫A(csin⁡x+dcos⁡x)+B(csin⁡x+dcos⁡x)′csin⁡x+dcos⁡xdx\\int{\\frac{a\\sin x+b\\cos x}{c\\sin x+d\\cos x}dx}=\\int{\\frac{A(c\\sin x+d\\cos x)+B(c\\sin x+d\\cos x)^{'}}{c\\sin x +d\\cos x}dx}csinx+dcosxasinx+bcosxdx=csinx+dcosxA(csinx+dcosx)+B(csinx+dcosx)dx

例4 求∫4sin⁡x+3cos⁡x2sin⁡x−cos⁡xdx\\int{\\frac{4\\sin x+3\\cos x}{2\\sin x-\\cos x}dx}2sinxcosx4sinx+3cosxdx
解:原式=∫a(2sin⁡x−cos⁡x)+b(2sin⁡x−cos⁡x)′2sin⁡x−cos⁡xdxa=1,b=2原式=x+22sin⁡x−cos⁡xd(2sin⁡x−cos⁡x)=x+2ln⁡∣2sin⁡x−cos⁡x∣+C解:原式=\\int{\\frac{a(2\\sin x-\\cos x)+b(2\\sin x-\\cos x)^{'}}{2\\sin x-\\cos x}dx}\\\\ a =1,b=2\\\\ 原式=x+\\frac{2}{2\\sin x-\\cos x}d(2\\sin x-\\cos x)=x+2\\ln|2\\sin x-\\cos x|+C :原式=2sinxcosxa(2sinxcosx)+b(2sinxcosx)dxa=1,b=2原式=x+2sinxcosx2d(2sinxcosx)=x+2ln∣2sinxcosx+C

后记

❓QQ:806797785

⭐️文档笔记地址:https://gitee.com/gaogzhen/math

参考:

[1]同济大学数学系.高等数学 第七版 上册[M].北京:高等教育出版社,2014.7.

[2]【梨米特】同济七版《高等数学》全程教学视频|纯干货知识点解析,应该是全网最细|微积分 | 高数[CP/OL].2020-04-16.p31.