华为OD机试-最大平分数组-2022Q4 A卷-Py/Java/JS
给定一个数组nums,可以将元素分为若干个组,使得每组和相等,求出满足条件的所有分组中,最大的平分组个数。
输入描述:
第一行输入 m
接着输入m个数,表示此数组
数据范围:1<=M<=50, 1<=nums[i]<=50
输出描述:
最大的平分组数个数。
示例1:
输入:
7
4 3 2 3 5 2 1
输出:
4
4 个子集(5),(1,4),(2,3),(2,3)
2 个子集(5, 1, 4),(2,3, 2,3)
最大的平分组数个数为4个。
示例2:
输入:
9
5 2 1 5 2 1 5 2 1
输出:
4
说明:可以等分的情况有:
4 个子集(5,1),(5,1),(5,1),(2,2,2)
2 个子集(5, 1, 5,1),(2,2, 2,5,1)
最大的平分组数个数为4个。
Java 代码
import java.util.Scanner;
import java.util.*;class Main {public static void main(String[] args) {// 处理输入Scanner in = new Scanner(System.in);String param_str = in.nextLine();int count = Integer.valueOf(param_str);//构造输入数据结构,并求和int[] nums = new int[count];String num_str = in.nextLine();int sum = 0;String[] num_list = num_str.split(" ");for (int i=0;i<count;i++) {nums[i] = Integer.valueOf(num_list[i]);sum += Integer.valueOf(num_list[i]);}// 最大可以等分为m个子数组for (int i=count;i>0;i--) {//从最大的可能行开始,满足条件即为为最小的情况if (canPartitionKSubsets(nums, i, sum)) {System.out.println(i);break;}}}public static boolean canPartitionKSubsets(int[] nums, int k, int all) {if (all % k != 0) {return false;}int per = all / k;Arrays.sort(nums);int n = nums.length;if (nums[n - 1] > per) {return false;}boolean[] dp = new boolean[1 << n];int[] curSum = new int[1 << n];dp[0] = true;for (int i = 0; i < 1 << n; i++) {if (!dp[i]) {continue;}for (int j = 0; j < n; j++) {if (curSum[i] + nums[j] > per) {break;}if (((i >> j) & 1) == 0) {int next = i | (1 << j);if (!dp[next]) {curSum[next] = (curSum[i] + nums[j]) % per;dp[next] = true;}}}}return dp[(1 << n) - 1];}
}
Python代码
import functoolsdef canPartitionKSubsets(nums, k):all = sum(nums)if all % k:return Falseper = all // knums.sort()if nums[-1] > per:return Falsen = len(nums)dp = [False] * (1 << n)dp[0] = Truecursum = [0] * (1 << n)for i in range(0, 1 << n):if not dp[i]:continuefor j in range(n):if cursum[i] + nums[j] > per:breakif (i >> j & 1) == 0:next = i | (1 << j)if not dp[next]:cursum[next] = (cursum[i] + nums[j]) % perdp[next] = Truereturn dp[(1 << n) - 1]#处理输入
n = int(input())
nums = [int(x) for x in input().split(" ")]for i in reversed(range(n+1)):#从最大的可能行开始,满足条件即为为最小的情况if (canPartitionKSubsets(nums, i)):print (i)break;
JS代码
function canPartitionKSubsets(nums, k) {if(k > nums.length) return falsenums = nums.sort((a,b)=> b - a)const buckts = new Array(k).fill(0)const sum = nums.reduce((acc, cur) => acc + cur)if(sum % k !== 0) return falseconst target = sum / klet fn = (nums, index, buckts, target) => {if (index === nums.length) {for(let i = 0; i < k; i++){if(buckts[i] !== target){return false}return true}}for (let i = 0; i < k; i++) {if (buckts[i] + nums[index] > target) continuebuckts[i] += nums[index]if (fn(nums, index + 1, buckts, target)) {return true}buckts[i] -= nums[index]}return false}return fn(nums, 0, buckts, target)
}function main(m, nums) {let sum=nums.sort((a, b) => b - a).reduce((p, c) => p + c);for (let i=m;i>0;i--) {//从最大的可能行开始,满足条件即为为最小的情况if (canPartitionKSubsets(nums, i)) {console.log(i);break;}}}main(7, [4, 3, 2, 3, 5, 2, 1])