> 文章列表 > 随机过程 Markov 链(中)

随机过程 Markov 链(中)

随机过程 Markov 链(中)

文章目录

  • 随机过程 Markov 链(中)
    • 极限定理平稳分布
      • 极限定理
      • 平稳分布与极限分布

随机过程 Markov 链(中)

极限定理及平稳分布

极限定理

Th:(基本极限定理)若状态 i i i 是周期为 d d d 的常返状态,则:
lim ⁡ n → ∞ p i i ( n d ) = d μ i \\lim\\limits_{n\\to\\infty}p_{ii}^{(nd)}=\\frac{d}{\\mu_i} nlimpii(nd)=μid
i i i 为零常返状态,即 μ i = ∞ \\mu_i=\\infty μi= 时, d μ i = 0 \\frac{d}{\\mu_i}=0 μid=0 ;显然,当 i i i 为非常返状态时, ∑ n = 1 ∞ p i i ( n ) < ∞ \\sum\\limits_{n=1}^{\\infty}p_{ii}^{(n)}\\lt \\infty n=1pii(n)< ,则 lim ⁡ n → ∞ p i i ( n ) = 0 \\lim\\limits_{n\\to\\infty}p_{ii}^{(n)}=0 nlimpii(n)=0

没有证明捏 ~( ̄▽ ̄)~*

Th:设 i i i 为常返状态,则:
i 为零常返状态 ⟺ lim ⁡ n → ∞ p i i ( n ) = 0 i\\text{为零常返状态}\\iff \\lim\\limits_{n\\to\\infty}p_{ii}^{(n)}=0 i为零常返状态nlimpii(n)=0
证明

  • i i i 为零常返状态,则 μ i = ∞ \\mu_i=\\infty μi= ,由上边的定理得 lim ⁡ n → ∞ p i i ( n d ) = d μ i = 0 \\lim\\limits_{n\\to\\infty}p_{ii}^{(nd)}=\\frac{d}{\\mu_i}=0 nlimpii(nd)=μid=0 ,并且当 m m m 不为 d d d 的整数倍时,由周期的定义有 p i i ( m ) = 0 p_{ii}^{(m)}=0 pii(m)=0 ,因此综合两点得到 lim ⁡ n → ∞ p i i ( n ) = 0 \\lim\\limits_{n\\to\\infty}p_{ii}^{(n)}=0 nlimpii(n)=0

  • lim ⁡ n → ∞ p i i ( n ) = 0 \\lim\\limits_{n\\to\\infty}p_{ii}^{(n)}=0 nlimpii(n)=0 ,反证法:设 i i i 为正常返状态,则 μ i < ∞ \\mu_i\\lt \\infty μi< ,故 lim ⁡ n → ∞ p i i ( n d ) = d μ i > 0 \\lim\\limits_{n\\to\\infty}p_{ii}^{(nd)}=\\frac{d}{\\mu_i}\\gt 0 nlimpii(nd)=μid>0 ,矛盾。

Th:设 i ↔ j i\\leftrightarrow j ij 且为常返状态(上一节的定理,常返状态是个类性质),当 i i i 为零常返状态时, j j j 也为零常返状态(即零常返也是类性质)

证明:有:
p i i ( m + n + l ) ≥ p i j ( n ) p j j ( l ) p j i ( m ) ≥ 0 p_{ii}^{(m+n+l)}\\geq p_{ij}^{(n)}p_{jj}^{(l)}p_{ji}^{(m)}\\geq 0 pii(m+n+l)pij(n)pjj(l)pji(m)0
l → ∞ l\\to\\infty l ,则由上面的定理知,因为 i i i 是零常返状态,所以 lim ⁡ l → ∞ p i i ( m + n + l ) = 0 \\lim\\limits_{l\\to\\infty}p_{ii}^{(m+n+l)}=0 llimpii(m+n+l)=0 ,因此:
0 ≥ p j j ( l ) ≥ 0 0\\geq p_{jj}^{(l)} \\geq 0 0pjj(l)0
lim ⁡ l → ∞ p j j ( l ) = 0 \\lim\\limits_{l\\to\\infty}p_{jj}^{(l)}=0 llimpjj(l)=0 ,因此 j j j 也是零常返状态,得证。

Th:接下来我们讨论 p i j ( n ) p_{ij}^{(n)} pij(n) 的极限性质:

  • j j j 为非常返状态或零常返状态,则对 ∀ i ∈ S \\forall i \\in S iS ,有:

lim ⁡ n → ∞ p i j ( n ) = 0 \\lim\\limits_{n\\to\\infty}p_{ij}^{(n)}=0 nlimpij(n)=0

  • 若 Markov 链为不可约、正常返,且非周期,则对于 ∀ i , j ∈ S \\forall i,\\,j\\,\\in S i,jS ,有:

lim ⁡ n → ∞ p i j ( n ) = 1 μ j \\lim\\limits_{n\\to\\infty}p_{ij}^{(n)}=\\frac{1}{\\mu_j} nlimpij(n)=μj1

证明:(1)由前边转移概率和首达概率的关系有: p i j ( n ) = ∑ l = 1 n f i j ( l ) p j j ( n − l ) p_{ij}^{(n)}=\\sum\\limits_{l=1}^n f_{ij}^{(l)}p_{jj}^{(n-l)} pij(n)=l=1nfij(l)pjj(nl) ,对 N < n N\\lt n N<n ,有:(因为总有 p j j n ≤ 1 p_{jj}^{n}\\leq 1 pjjn1
∑ l = 1 n f i j ( l ) p j j ( n − l ) ≤ ∑ l = 1 N f i j ( l ) p j j ( n − l ) + ∑ l = N + 1 n f i j ( l ) \\sum\\limits_{l=1}^n f_{ij}^{(l)}p_{jj}^{(n-l)} \\leq \\sum\\limits_{l=1}^N f_{ij}^{(l)}p_{jj}^{(n-l)}+\\sum\\limits_{l=N+1}^{n}f_{ij}^{(l)} l=1nfij(l)pjj(nl)l=1Nfij(l)pjj(nl)+l=N+1nfij(l)
首先固定 N N N ,令 n → ∞ n\\to\\infty n

  • j j j 为非常返状态,由于 lim ⁡ n → ∞ ∑ i = 1 n p j j ( i ) < ∞ \\lim\\limits_{n\\to\\infty}\\sum\\limits_{i=1}^{n}p_{jj}^{(i)}\\lt \\infty nlimi=1npjj(i)< ,因此 lim ⁡ n → ∞ p j j ( n ) = 0 \\lim\\limits_{n\\to\\infty}p_{jj}^{(n)}=0 nlimpjj(n)=0 ,故 lim ⁡ n → ∞ ∑ l = 1 N f i j ( l ) p j j ( n − l ) = 0 \\lim\\limits_{n\\to\\infty}\\sum\\limits_{l=1}^N f_{ij}^{(l)}p_{jj}^{(n-l)}=0 nliml=1Nfij(l)pjj(nl)=0
  • j j j 为零常返状态,由上面的定理可知, lim ⁡ n → ∞ p j j ( n ) = 0 \\lim\\limits_{n\\to\\infty}p_{jj}^{(n)}=0 nlimpjj(n)=0 ,故 lim ⁡ n → ∞ ∑ l = 1 N f i j ( l ) p j j ( n − l ) = 0 \\lim\\limits_{n\\to\\infty}\\sum\\limits_{l=1}^N f_{ij}^{(l)}p_{jj}^{(n-l)}=0 nliml=1Nfij(l)pjj(nl)=0

所以得到:
p i j ( n ) = ∑ l = 1 n f i j ( l ) p j j ( n − l ) ≤ ∑ l = N + 1 n f i j ( l ) p_{ij}^{(n)}=\\sum\\limits_{l=1}^n f_{ij}^{(l)}p_{jj}^{(n-l)} \\leq \\sum\\limits_{l=N+1}^{n}f_{ij}^{(l)} pij(n)=l=1nfij(l)pjj(nl)l=N+1nfij(l)
由于 ∑ l = 1 ∞ f i j ( l ) ≤ 1 < ∞ \\sum\\limits_{l=1}^{\\infty}f_{ij}^{(l)}\\leq 1\\lt \\infty l=1fij(l)1< ,所以 lim ⁡ l → ∞ f i j ( l ) = 0 \\lim\\limits_{l\\to\\infty}f_{ij}^{(l)}=0 llimfij(l)=0 ,因此再令 N → ∞ N\\to\\infty N ,则 ∑ l = N + 1 n f i j ( l ) → 0 \\sum\\limits_{l=N+1}^{n}f_{ij}^{(l)}\\to 0 l=N+1nfij(l)0 ,故:
lim ⁡ n → ∞ p i j ( n ) ≤ 0 ⇒ lim ⁡ n → ∞ p i j ( n ) = 0 \\lim\\limits_{n\\to\\infty}p_{ij}^{(n)}\\leq 0 \\Rightarrow \\lim\\limits_{n\\to\\infty}p_{ij}^{(n)}=0 nlimpij(n)0nlimpij(n)=0
(2)利用(1)中的式子可以得到:
∑ l = 1 N f i j ( l ) p j j ( n − l ) ≤ p i j ( n ) ≤ ∑ l = 1 N f i j ( l ) p j j ( n − l ) + ∑ l = N + 1 n f i j ( l ) \\sum\\limits_{l=1}^N f_{ij}^{(l)}p_{jj}^{(n-l)} \\leq p_{ij}^{(n)} \\leq \\sum\\limits_{l=1}^N f_{ij}^{(l)}p_{jj}^{(n-l)} + \\sum\\limits_{l=N+1}^n f_{ij}^{(l)} l=1Nfij(l)pjj(nl)pij(n)l=1Nfij(l)pjj(nl)+l=N+1nfij(l)
先固定 N N N ,令 n → ∞ n\\to\\infty n ,由于 j j j 是正常返、周期为 1 1 1 的状态,由这一节的第一个定理可以得到: lim ⁡ n → ∞ p j j n = 1 μ j \\lim\\limits_{n\\to\\infty}p_{jj}^{n}=\\frac{1}{\\mu_j} nlimpjjn=μj1 ,即:
1 μ j ∑ l = 1 N f i j ( l ) ≤ p i j ( n ) ≤ 1 μ j ∑ l = 1 N f i j ( l ) + ∑ l = N + 1 n f i j ( l ) \\frac{1}{\\mu_j}\\sum\\limits_{l=1}^N f_{ij}^{(l)} \\leq p_{ij}^{(n)} \\leq \\frac{1}{\\mu_j}\\sum\\limits_{l=1}^N f_{ij}^{(l)} + \\sum\\limits_{l=N+1}^n f_{ij}^{(l)} μj1l=1Nfij(l)pij(n)μj1l=1Nfij(l)+l=N+1nfij(l)
又令 N → ∞ N\\to\\infty N ,由于这个 Markov 链是不可约的,因此 i ↔ j i\\leftrightarrow j ij ,故 f i j = 1 f_{ij}=1 fij=1 ,且由(1)中证明可以得到 ∑ l = N + 1 n f i j ( l ) → 0 \\sum\\limits_{l=N+1}^{n}f_{ij}^{(l)}\\to 0 l=N+1nfij(l)0 ,故:
1 μ j ≤ lim ⁡ n → ∞ p i j ( n ) ≤ 1 μ j ⇒ lim ⁡ n → ∞ p i j ( n ) = 1 μ j \\frac{1}{\\mu_j}\\leq \\lim\\limits_{n\\to\\infty}p_{ij}^{(n)}\\leq \\frac{1}{\\mu_j} \\Rightarrow \\lim\\limits_{n\\to\\infty}p_{ij}^{(n)}= \\frac{1}{\\mu_j} μj1nlimpij(n)μj1nlimpij(n)=μj1
Th:状态有限的 Markov 链,不可能全为非常返状态,也不可能有零常返状态;从而不可约的有限 Markov 链是正常返的。

证明:(1)反证法,若状态空间为 S = { 1 , 2 , ⋯ , N } S=\\{1,\\,2,\\,\\cdots,\\,N\\} S={1,2,,N} 的 Markov 链全为非常返状态,则:

  • i → j i\\to j ij ,由前面定理的(2)得到, p i j ( n ) → 1 μ j = 0 p_{ij}^{(n)}\\to\\frac{1}{\\mu_j}=0 pij(n)μj1=0 n → ∞ n\\to\\infty n);
  • i ↛ j i\\not\\to j ij ,则显然 p i j ( n ) = 0 p_{ij}^{(n)}=0 pij(n)=0

即对任意 i i i ,当 n → ∞ n\\to\\infty n 时都有 ∑ j = 1 N p i j ( n ) = 0 \\sum\\limits_{j=1}^{N} p_{ij}^{(n)}=0 j=1Npij(n)=0 ;但是显然只有这 N N N 个状态,因此 ∑ j = 1 N p i j ( n ) = 1 \\sum\\limits_{j=1}^N p_{ij}^{(n)}=1 j=1Npij(n)=1 ,矛盾,因此不可能全为非常返状态;

(2)若 S S S 中有零常返状态,设为 i i i ,令 C = { j ∣ i → j } C=\\{j\\,|\\,i\\to j\\} C={jij} ,有 ∑ j ∈ C p i j ( n ) = 1 \\sum\\limits_{j\\in C}p_{ij}^{(n)}=1 jCpij(n)=1 ;由 i i i 为常返状态得,由于 i i i 是常返状态,所以 f i i = 1 f_{ii}=1 fii=1 ,又因为 C C C 中状态有限,所以这个概率为 1 代表必然事件,即从 i i i 出发,在有限步内必然可以回到 i i i 。因此对于 ∀ j ∈ C \\forall j\\in C jC ,都有 j → i j\\to i ji 。故 i ↔ j i\\leftrightarrow j ij ,又因为零常返是类性质,因此 j j j 也是零常返状态,则由前面一个定理的(1)得到 lim ⁡ n → ∞ p i j ( n ) = 0 \\lim\\limits_{n\\to\\infty}p_{ij}^{(n)}=0 nlimpij(n)=0 。故当 n → ∞ n\\to\\infty n 时,有 ∑ j ∈ C p i j ( n ) = 0 \\sum\\limits_{j\\in C}p_{ij}^{(n)}=0 jCpij(n)=0 ,与 ∑ j ∈ C p i j ( n ) = 1 \\sum\\limits_{j\\in C}p_{ij}^{(n)}=1 jCpij(n)=1 矛盾。因此 S S S 中不存在零常返状态。

Th:若 Markov 链有一个零常返状态,则必有无限多个零常返状态。

证明:这是一个推论,和前面一个定理一样,如果只有有限多个零常返状态,则可以推出 ∑ j ∈ C p i j ( n ) = 0 \\sum\\limits_{j\\in C}p_{ij}^{(n)}=0 jCpij(n)=0 ∑ j ∈ C p i j ( n ) = 1 \\sum\\limits_{j\\in C}p_{ij}^{(n)}=1 jCpij(n)=1 矛盾

:设 Markov 链的转移矩阵为:
P = [ 1 − p p q 1 − q ] 0 < p , q < 1 P=\\begin{bmatrix} 1-p & p \\\\ q & 1-q \\end{bmatrix} \\quad 0\\lt p,\\,q \\lt 1 P=[1pqp1q]0<p,q<1
:对于极限转移概率,需要考虑 P n P^n Pn n → ∞ n\\to\\infty n),对 P P P 进行特征值分解,得到:
P = Q D Q − 1 D = [ 1 0 0 1 − p − q ] Q = [ 1 − p 1 q ] Q − 1 = [ q p + q p p + q − 1 p + q 1 p + q ] P=QDQ^{-1} \\quad D=\\begin{bmatrix} 1 & 0 \\\\ 0 & 1-p-q \\end{bmatrix} \\quad Q=\\begin{bmatrix} 1 & -p \\\\ 1 & q \\end{bmatrix} \\quad Q^{-1}=\\begin{bmatrix} \\frac{q}{p+q} & \\frac{p}{p+q} \\\\ -\\frac{1}{p+q} & \\frac{1}{p+q} \\end{bmatrix} P=QDQ1D=[1001pq]Q=[11pq]Q1=[p+qqp+q1p+qpp+q1]
则:
P n = Q D Q − 1 Q D Q − 1 ⋯ Q D Q − 1 = Q D n Q − 1 = [ q + p ( 1 − p − q ) n p + q p − p ( 1 − p − q ) n p + q q − q ( 1 − p − q ) n p + q p + q ( 1 − p − q ) n p + q ] P^n=QDQ^{-1}QDQ^{-1}\\cdots QDQ^{-1}=QD^{n}Q^{-1}= \\begin{bmatrix} \\frac{q+p(1-p-q)^n}{p+q} & \\frac{p-p(1-p-q)^n}{p+q} \\\\ \\frac{q-q(1-p-q)^n}{p+q} & \\frac{p+q(1-p-q)^n}{p+q} \\end{bmatrix} Pn=QDQ1QDQ1QDQ1=QDnQ1=[p+qq+p(1pq)np+qqq(1pq)np+qpp(1pq)np+qp+q(1pq)n]
故:
lim ⁡ n → ∞ P n = [ q p + q p p + q q p + q p p + q ] \\lim\\limits_{n\\to\\infty}P^{n}=\\begin{bmatrix} \\frac{q}{p+q} & \\frac{p}{p+q} \\\\ \\frac{q}{p+q} & \\frac{p}{p+q} \\end{bmatrix} nlimPn=[p+qqp+qqp+qpp+qp]
可见此 Markov 链的 n n n 步转移概率的极限存在。

:设 Markov 的状态空间 S = { 1 , 2 , 3 , 4 , 5 } S=\\{1,\\,2,\\,3,\\,4,\\,5\\} S={1,2,3,4,5} ,转移矩阵为:
P = [ 1 0 0 0 0 0 1 0 0 0 1 2 0 0 1 2 0 0 0 1 2 0 1 2 0 1 2 0 1 2 0 ] P=\\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\\\ 0 & 1 & 0 & 0 & 0 \\\\ \\frac{1}{2} & 0 & 0 & \\frac{1}{2} & 0 \\\\ 0 & 0 & \\frac{1}{2} & 0 & \\frac{1}{2} \\\\ 0 & \\frac{1}{2} & 0 & \\frac{1}{2} & 0 \\\\ \\end{bmatrix} P= 1021000100210002100021021000210
试确定常返状态、瞬过状态(即非常返状态),并对常返状态 i i i 确定其平均回转时间 μ i \\mu_i μi

:画出状态转移图:

显然状态 1、2 的周期为 1,3、4、5 的周期为 2;用分块矩阵计算,可以得到:
$$
\\lim\\limits_{n\\to\\infty}P^n=\\begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\

  • & * & 0 & 0 & 0 \\
  • & * & 0 & 0 & 0 \\
  • & * & 0 & 0 & 0 \\
    \\end{bmatrix}
    $$
    从而 1 1 1 2 2 2 为正常返状态,3、4、5 为非常返状态。 由这节开头的极限定理可知 lim ⁡ n → ∞ p i i ( n d ) = d μ i \\lim\\limits_{n\\to\\infty}p_{ii}^{(nd)}=\\frac{d}{\\mu_i} nlimpii(nd)=μid ,因此 μ 1 = μ 2 = 1 \\mu_1=\\mu_2=1 μ1=μ2=1 (由定义也可以知道,状态 1 或 2 平均一步就可以返回原来的状态)。此 Markov 链可以分为三类: { 1 } \\{1\\} {1} { 2 } \\{2\\} {2} { 3 , 4 , 5 } \\{3,\\,4,\\,5\\} {3,4,5}

平稳分布与极限分布

平稳分布:对于 Markov 链,概率分布 { p j , j ∈ S } \\{p_j,\\,j\\in S\\} {pj,jS} 称为平稳分布,若:
p j = ∑ i ∈ S p i p i j p_j=\\sum\\limits_{i\\in S} p_ip_{ij} pj=iSpipij
若 Markov 的初始分布 P ( X 0 = j ) = p j j ∈ S P(X_0=j)=p_j\\quad j\\in S P(X0=j)=pjjS 是平稳分布,则:
p ( X 1 = j ) = ∑ i ∈ S P ( X 1 = j ∣ X 0 = i ) ⋅ P ( X 0 = i ) = ∑ i ∈ S p i j p i = p j \\begin{align} p(X_1=j)=&\\,\\sum\\limits_{i\\in S}P(X_1=j|X_0=i)\\cdot P(X_0=i) \\\\ =&\\,\\sum\\limits_{i\\in S}p_{ij}p_{i} \\\\ =&\\,p_j \\end{align} p(X1=j)===iSP(X1=jX0=i)P(X0=i)iSpijpipj
得到任意 X i X_i Xi 都有着相同的分布,这就是为什么称为平稳分布。

遍历:如果所有状态相通(即不可约)且均是周期为 1 1 1 (即非周期)的正常返状态,则称 Markov 链是遍历的;

  • 遍历的 Markov 链:不可约、正常返、非周期

极限分布:对于遍历的 Markov 链,极限:
lim ⁡ n → ∞ p i j ( n ) = π j \\lim\\limits_{n\\to\\infty}p_{ij}^{(n)}=\\pi_{j} nlimpij(n)=πj
称为 Markov 的极限分布;由上一节的极限定理可知, π j = 1 μ j \\pi_j=\\frac{1}{\\mu_j} πj=μj1

下面的定理说明对于遍历的 Markov 链,极限分布就是平稳分布,并且是唯一的平稳分布。

Th:对于不可约非周期的 Markov 链:

  • 若它是遍历的,则 KaTeX parse error: Expected group after '_' at position 11: \\pi_j=\\lim_̲\\limits{n\\to\\in… j ∈ S j\\in S jS) 是平稳分布,并且是唯一的平稳分布;
  • 若状态都是瞬过的或全为零常返的(肯定是无穷多个状态),则平稳分布不存在;

证明

(1)对于遍历的 Markov 链,由上一节的极限定理可知, π j = 1 μ j \\pi_j=\\frac{1}{\\mu_j} πj=μj1 是存在的,首先证明 { π j , j ∈ S } \\{\\pi_j,\\,j\\in S\\} {πj,jS} 是平稳分布。由于 ∑ j ∈ S p i j ( n ) = 1 \\sum\\limits_{j\\in S}p_{ij}^{(n)}=1 jSpij(n)=1 ,有:
lim ⁡ n → ∞ ∑ j ∈ S p i j ( n ) = 1 \\lim\\limits_{n\\to\\infty}\\sum\\limits_{j\\in S}p_{ij}^{(n)}=1 nlimjSpij(n)=1
显然式中的极限和求和可以交换顺序,得到:
∑ j ∈ S π j = 1 \\sum\\limits_{j\\in S}\\pi_j=1 jSπj=1
由 C-K 方程得到:
p i j ( n + 1 ) = ∑ k ∈ S p i k ( n ) p k j p_{ij}^{(n+1)}=\\sum\\limits_{k\\in S}p_{ik}^{(n)}p_{kj} pij(n+1)=kSpik(n)pkj
两边对 n n n 取极限得到:
π j = lim ⁡ n → ∞ p i j ( n + 1 ) = lim ⁡ n → ∞ ∑ k ∈ S p i k ( n ) p k j = ∑ k ∈ S lim ⁡ n → ∞ ( p i k ( n ) ) p k j = ∑ k ∈ S π k p k j \\pi_j=\\lim\\limits_{n\\to\\infty}p_{ij}^{(n+1)} =\\lim\\limits_{n\\to\\infty}\\sum\\limits_{k\\in S}p_{ik}^{(n)}p_{kj} =\\sum\\limits_{k\\in S}\\lim\\limits_{n\\to\\infty}\\left(p_{ik}^{(n)}\\right)p_{kj} =\\sum\\limits_{k\\in S}\\pi_kp_{kj} πj=nlimpij(n+1)=nlimkSpik(n)pkj=kSnlim(pik(n))pkj=kSπkpkj
π j = ∑ k ∈ S π k p k j \\pi_j=\\sum\\limits_{k\\in S}\\pi_kp_{kj} πj=kSπkpkj ,从而 { π j , j ∈ S } \\{\\pi_j,\\,j\\in S\\} {πj,jS} 是平稳分布。

再证明 { π j , j ∈ S } \\{\\pi_j,\\,j\\in S\\} {πj,jS} 是唯一的平稳分布。设还有另一个平稳分布 { π ~ j , j ∈ S } \\{\\tilde\\pi_j,\\,j\\in S\\} {π~j,jS} ,则由 π ~ j = ∑ k ∈ S π ~ k p k j \\tilde\\pi_j=\\sum\\limits_{k\\in S}\\tilde\\pi_kp_{kj} π~j=kSπ~kpkj 归纳得到:
π ~ j = ∑ k ∈ S π ~ k p k j ( n ) , n = 1 , 2 , ⋯ \\tilde\\pi_j=\\sum\\limits_{k\\in S}\\tilde\\pi_kp_{kj}^{(n)},\\,n=1,\\,2,\\,\\cdots π~j=kSπ~kpkj(n),n=1,2,
两边对 n n n 取极限得到:
π ~ j = ∑ k ∈ S π ~ k lim ⁡ n → ∞ p k j ( n ) = ∑ k ∈ S π ~ k π j \\tilde\\pi_j=\\sum\\limits_{k\\in S}\\tilde\\pi_k\\lim\\limits_{n\\to\\infty}p_{kj}^{(n)}=\\sum\\limits_{k\\in S}\\tilde\\pi_k\\pi_j π~j=kSπ~knlimpkj(n)=kSπ~kπj
由上面的证明可知 ∑ k ∈ S π ~ k = 1 \\sum\\limits_{k\\in S}\\tilde \\pi_k=1 kSπ~k=1 ,因此 π ~ j = π j \\tilde\\pi_j=\\pi_j π~j=πj ,所以得证平稳分布唯一。

(2)反证法:假设存在一个平稳分布 { π j , j ∈ S } \\{\\pi_j,\\,j\\in S\\} {πj,jS} ,则由(1)中证明得到:
π j = ∑ k ∈ S π k p k j ( n ) , n = 1 , 2 , ⋯ \\pi_j=\\sum\\limits_{k\\in S}\\pi_kp_{kj}^{(n)},\\,n=1,\\,2,\\,\\cdots πj=kSπkpkj(n),n=1,2,
j j j 为非常返或者零常返状态,当 n → ∞ n\\to\\infty n 时,由上一节的 p k j ( n ) p_{kj}^{(n)} pkj(n) 的极限性质得, lim ⁡ n → ∞ p k j ( n ) = 0 \\lim\\limits_{n\\to\\infty}p_{kj}^{(n)}=0 nlimpkj(n)=0 ,因此 π j = 0 \\pi_j=0 πj=0 ∀ j ∈ S \\forall j\\in S jS),但是这个是不可能的,因此对于非常返的或者零常返的 Markov 链,不存在平稳分布。

注意

  • 不可约、非周期的 Markov 链,只要有一个是正常返状态,就全是正常返状态;只要有一个是非常返状态,就全是非常返状态;只要有一个是零常返状态,就全是零常返状态。所有说这个定理的两种情况已经包括了所有的不可约、非周期的 Markov 链;
  • π j = 1 μ j \\pi_j=\\frac{1}{\\mu_j} πj=μj1 是一种简便计算状态的平均回转时间的方法;

下面的例子你可以看到,往往是直接解对应的线性方程组来得到平稳分布。

:设甲袋中有 k k k 个白球和 1 1 1 个黑球,乙袋中有 k + 1 k+1 k+1 个白球,每次从两袋中任取一球,交换后放入对方的袋中。证明经过 n n n 次交换后,黑球仍在甲袋中的概率 p n p_n pn 满足 lim ⁡ n → ∞ p = 1 2 \\lim\\limits_{n\\to\\infty}p=\\frac{1}{2} nlimp=21

:以 X n X_n Xn 表示第 n n n 次取球后甲袋中的黑球数,则 { X n , n = 1 , 2 , ⋯ } \\{X_n,\\,n=1,\\,2,\\,\\cdots\\} {Xn,n=1,2,} 是状态空间为 S = { 0 , 1 } S=\\{0,\\,1\\} S={0,1} 的时齐 Markov 链,一步转移矩阵为:
P = [ k k + 1 1 k + 1 1 k + 1 k k + 1 ] P=\\begin{bmatrix} \\frac{k}{k+1} & \\frac{1}{k+1} \\\\ \\frac{1}{k+1} & \\frac{k}{k+1} \\\\ \\end{bmatrix} P=[k+1kk+11k+11k+1k]
它的平稳分布满足:
{ π 0 = k k + 1 π 0 + 1 k + 1 π 1 π 1 = 1 k + 1 π 0 + k k + 1 π 1 \\left\\{ \\begin{array}{l} \\pi_0=\\frac{k}{k+1}\\pi_0+\\frac{1}{k+1}\\pi_1 \\\\ \\pi_1=\\frac{1}{k+1}\\pi_0+\\frac{k}{k+1}\\pi_1 \\end{array} \\right. {π0=k+1kπ0+k+11π1π1=k+11π0+k+1kπ1
且有规范性条件 π 0 + π 1 = 1 \\pi_0+\\pi_1=1 π0+π1=1 ,解得 π = ( π 0 , π 1 ) = ( 1 2 , 1 2 ) \\pi=(\\pi_0,\\,\\pi_1)=(\\frac{1}{2},\\,\\frac{1}{2}) π=(π0,π1)=(21,21) ,故经过 n n n 次交换过后,黑球仍在甲袋中的概率为:
lim ⁡ n → ∞ p n = lim ⁡ n → ∞ P ( X n = 1 ) = π 1 = 1 2 \\lim\\limits_{n\\to\\infty}p_n=\\lim\\limits_{n\\to\\infty}P(X_n=1)=\\pi_1=\\frac{1}{2} nlimpn=nlimP(Xn=1)=π1=21
:某种商品的销售情况共有连续 24 个季度的数据(其中 1 表示畅销,2 表示滞销):
1 1 2 1 2 2 1 1 1 2 1 2 1 1 2 2 1 1 2 1 2 1 1 1 \\begin{array}{} 1 & 1 & 2 & 1 & 2 & 2 & 1 & 1 & 1 & 2 & 1 & 2 & 1 & 1 & 2 & 2 & 1 & 1 & 2 & 1 & 2 & 1 & 1 & 1 \\end{array} 112122111212112211212111
如果该商品的销售情况近似满足时齐性于 Markov 性:

(1)试确定销售状态的一步转移概率矩阵;

(2)如果现在是畅销,试预测之后的第四个季度的销售状况;

(3)如果影响销售的所有因素不变,试预测长期的销售状况;

:以 X n X_n Xn 表示第 n n n 季度该商品的销售状况,则 { X n , n = 1 , 2 , ⋯ } \\{X_n,\\,n=1,\\,2,\\,\\cdots\\} {Xn,n=1,2,} 为状态空间为 S = { 1 , 2 } S=\\{1,\\,2\\} S={1,2} 的时齐 Markov 链。

(1)由 1 → 1 1\\to 1 11 7 7 7 次, 1 → 2 1\\to 2 12 7 7 7 次,故 p 11 = p 12 = 1 2 p_{11}=p_{12}=\\frac{1}{2} p11=p12=21 ;由 2 → 1 2\\to 1 21 7 7 7 次, 2 → 2 2\\to 2 22 2 2 2 次,故 p 21 = 7 9 p_{21}=\\frac{7}{9} p21=97 p 22 = 2 9 p_{22}=\\frac{2}{9} p22=92 ;一步转移矩阵为:
P = [ 1 2 1 2 7 9 2 9 ] P=\\begin{bmatrix} \\frac{1}{2} & \\frac{1}{2} \\\\ \\frac{7}{9} & \\frac{2}{9} \\\\ \\end{bmatrix} P=[21972192]
(2)有:
P ( 4 ) = P 4 = [ 0.611 0.389 0.605 0.395 ] P^{(4)}=P^4=\\begin{bmatrix} 0.611 & 0.389 \\\\ 0.605 & 0.395 \\\\ \\end{bmatrix} P(4)=P4=[0.6110.6050.3890.395]
如果现在是畅销,则四个季度之后该商品以 0.611 的概率畅销;

(3)由平稳方程 ( π 0 , π 1 ) = ( π 0 , π 1 ) P (\\pi_0,\\,\\pi_1)=(\\pi_0,\\,\\pi_1)P (π0,π1)=(π0,π1)P 和规范性条件 π 0 + π 1 = 1 \\pi_0+\\pi_1=1 π0+π1=1 得到:
{ π 0 = 1 2 π 0 + 7 9 π 1 π 1 = 1 2 π 0 + 2 9 π 1 π 0 + π 1 = 1 \\left\\{ \\begin{array}{l} \\pi_0=\\frac{1}{2}\\pi_0+\\frac{7}{9}\\pi_1 \\\\ \\pi_1=\\frac{1}{2}\\pi_0+\\frac{2}{9}\\pi_1 \\\\ \\pi_0+\\pi_1=1 \\end{array} \\right. π0=21π0+97π1π1=21π0+92π1π0+π1=1
解得 π = ( π 0 , π 1 ) = ( 14 23 , 9 23 ) \\pi=(\\pi_0,\\,\\pi_1)=(\\frac{14}{23},\\,\\frac{9}{23}) π=(π0,π1)=(2314,239) ,即长期下去,该商品将以 14 23 \\frac{14}{23} 2314 的概率畅销。