> 文章列表 > Java面试题总结 | Java面试题总结3-JVM模块(持续更新)

Java面试题总结 | Java面试题总结3-JVM模块(持续更新)

Java面试题总结 | Java面试题总结3-JVM模块(持续更新)

JVM

文章目录

  • JVM
    • JVM的内存组成模型
    • java的内存模型定义了什么
    • java的内存分布情况
    • 程序计数器是什么?
    • 堆、栈、方法区都存放的是什么
    • 堆和栈的区别
    • 类加载
    • JMM主内存和本地内存交互操作
    • volatile如何保证可见性
    • volatile如何保证有序性
    • happen-before了解过吗?
    • 内存泄漏和内存溢出的概念
    • 内存泄露的原因如何解决
    • 什么是内存溢出,怎么解决?
    • 如何判断对象已经死亡
    • 强引用、软引用、弱引用、虚引用四种(引用强度逐渐减弱)
    • 有哪些垃圾回收算法
    • 分代收集算法
    • 垃圾回收器
      • Serial 收集器
      • ParNew 收集器
      • Parallel Scavenge 收集器
      • Serial Old 收集器
      • Parallel Old 收集器
      • CMS 收集器
      • G1 收集器
    • CMS的回收过程
      • 3次GC
    • 介绍一下老年代
    • CyclicBarrier
      • CyclicBarrier有两个构造函数:
    • CyclicBarrier
      • CyclicBarrier有两个构造函数:

JVM的内存组成模型

JVM是java虚拟机,由四个部分组成,分别为:ClassLoader(类加载器),Runtime Data Area(运行时数据区,内存分区),Execution Engine(执行引擎),Native Interface(本地库接口),下图可以大致描述 JVM 的结构。

java的内存模型就是JMM,JMM是屏蔽掉各种硬件和操作系统的内存访问差异,以实现让java程序在各种平台下都能达到一致的并发效果。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-5xOD2NL0-1681540635269)(D:/学习/JAVA/面经/面试题整理版本.assets/jvm-1.jpg)]

程序在执行之前先要把 java 代码转换成字节码(class 文件),jvm 首先需要把字节码通过类加载器(Class Loader)把文件加载到内存中运行时数据区(Runtime Data Area),而字节码文件是 jvm 的一套指令集规范,并不能直接交给底层操作系统去执行,因此需要特定的命令解析器执行引擎(Execution Engine) 将字节码翻译成底层系统指令再交由 CPU 去执行,而这个过程中需要调用其他语言的接口:本地库接口(Native Interface)来实现整个程序的功能,这就是 4 个主要组成部分的职责与功能.

线程之间的共享变量存储在主内存(main memory)中,每个线程都有一个私有的本地内存(local memory),线程的本地内存保存了该线程用到的变量和主内存的副本拷贝,线程对变量的操作都在本地内存中进行线程不能直接读写主内存中的变量

主内存:主要存储的是Java实例对象,所有线程创建的实例对象都存放在主内存中,不管该实例对象是成员变量还是方法中的本地变量(也称局部变量),当然也包括了共享的类信息、常量、静态变量。共享数据区域,多条线程对同一个变量进行访问可能会发现线程安全问题。

工作内存:主要存储当前方法的所有本地变量信息(工作内存中存储着主内存中的变量副本拷贝),每个线程只能访问自己的工作内存,即线程中的本地变量对其它线程是不可见的,就算是两个线程执行的是同一段代码,它们也会各自在自己的工作内存中创建属于当前线程的本地变量,当然也包括了字节码行号指示器、相关Native方法的信息。由于工作内存是每个线程的私有数据,线程间无法相互访问工作内存,因此存储在工作内存的数据不存在线程安全问题。

java的内存模型定义了什么

整个Java内存模型实际上是围绕着三个特征建立起来的。分别是:原子性,可见性,有序性。这三个特征可谓是整个Java并发的基础。

1 原子性(Atomicity):一个操作是不可中断的,要么全部执行成功要么全部执行失败。
2 可见性(Visibility):所有线程都能看到主内存的最新状态。(一个线程修改了一个共享变量,其他线程能够立即看到该变量的最新值)
3 有序性(Ordering):即程序执行的顺序按照代码的先后顺序执行。

java的内存分布情况

Java虚拟机在执行Java程序的过程中会把它所管理的内存划分为若干个不同的数据区域。这些区域有各自的用途,以及创建和销毁的时间,有的区域随着虚拟机进程的启动而一直存在,有些区域则是依赖用户线程的启动和结束而建立和销毁。根据《Java虚拟机规范》的规定,Java虚拟机所管理的内存将会包括以下几个运行时数据区域。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-NWRhcFiS-1681540635270)(D:/学习/JAVA/面经/面试题整理版本.assets/jvm-2.jpg)]

  1. 程序计数器

    程序计数器(Program Counter Register)是一块较小的内存空间,它可以看作是当前线程所执行的字节码的行号指示器。在Java虚拟机的概念模型里,字节码解释器工作时就是通过改变这个计数器的值来选取下一条需要执行的字节码指令,它是程序控制流的指示器,分支、循环、跳转、异常处理、线程恢复等基础功能都需要依赖这个计数器来完成。

    由于Java虚拟机的多线程是通过线程轮流切换、分配处理器执行时间的方式来实现的,在任何一个确定的时刻,一个处理器(对于多核处理器来说是一个内核)都只会执行一条线程中的指令。因此,为了线程切换后能恢复到正确的执行位置,每条线程都需要有一个独立的程序计数器,各条线程之间计数器互不影响,独立存储,我们称这类内存区域为“线程私有”的内存。

    如果线程正在执行的是一个Java方法,这个计数器记录的是正在执行的虚拟机字节码指令的地址;如果正在执行的是本地(Native)方法,这个计数器值则应为空(Undefined)。此内存区域是唯一一个在《Java虚拟机规范》中没有规定任何OutOfMemoryError情况的区域。

  2. Java虚拟机栈

    与程序计数器一样,Java虚拟机栈(Java Virtual Machine Stack)也是线程私有的,它的生命周期与线程相同。虚拟机栈描述的是Java方法执行的线程内存模型:每个方法被执行的时候,Java虚拟机都会同步创建一个栈帧[插图](Stack Frame)用于存储局部变量表、操作数栈、动态连接、方法出口等信息。每一个方法被调用直至执行完毕的过程,就对应着一个栈帧在虚拟机栈中从入栈到出栈的过程。

    在《Java虚拟机规范》中,对这个内存区域规定了两类异常状况:如果线程请求的栈深度大于虚拟机所允许的深度,将抛出StackOverflowError异常;如果Java虚拟机栈容量可以动态扩展,当栈扩展时无法申请到足够的内存会抛出OutOfMemoryError异常。

  3. 本地方法栈

    本地方法栈(Native Method Stacks)与虚拟机栈所发挥的作用是非常相似的,其区别只是虚拟机栈为虚拟机执行Java方法(也就是字节码)服务,而本地方法栈则是为虚拟机使用到的本地(Native)方法服务。

    《Java虚拟机规范》对本地方法栈中方法使用的语言、使用方式与数据结构并没有任何强制规定,因此具体的虚拟机可以根据需要自由实现它,甚至有的Java虚拟机(譬如Hot-Spot虚拟机)直接就把本地方法栈和虚拟机栈合二为一。与虚拟机栈一样,本地方法栈也会在栈深度溢出或者栈扩展失败时分别抛出StackOverflowError和OutOfMemoryError异常。

  4. Java堆

    对于Java应用程序来说,Java堆(Java Heap)是虚拟机所管理的内存中最大的一块。Java堆是被所有线程共享的一块内存区域,在虚拟机启动时创建。此内存区域的唯一目的就是存放对象实例,Java世界里“几乎”所有的对象实例都在这里分配内存。在《Java虚拟机规范》中对Java堆的描述是:“所有的对象实例以及数组都应当在堆上分配”,而这里笔者写的“几乎”是指从实现角度来看,随着Java语言的发展,现在已经能看到些许迹象表明日后可能出现值类型的支持,即使只考虑现在,由于即时编译技术的进步,尤其是逃逸分析技术的日渐强大,栈上分配、标量替换优化手段已经导致一些微妙的变化悄然发生,所以说Java对象实例都分配在堆上也渐渐变得不是那么绝对了。

    根据《Java虚拟机规范》的规定,Java堆可以处于物理上不连续的内存空间中,但在逻辑上它应该被视为连续的,这点就像我们用磁盘空间去存储文件一样,并不要求每个文件都连续存放。但对于大对象(典型的如数组对象),多数虚拟机实现出于实现简单、存储高效的考虑,很可能会要求连续的内存空间。

    Java堆既可以被实现成固定大小的,也可以是可扩展的,不过当前主流的Java虚拟机都是按照可扩展来实现的(通过参数-Xmx和-Xms设定)。如果在Java堆中没有内存完成实例分配,并且堆也无法再扩展时,Java虚拟机将会抛出OutOfMemoryError异常。

  5. 方法区

    方法区(Method Area)与Java堆一样,是各个线程共享的内存区域,它用于存储已被虚拟机加载的类型信息、常量、静态变量、即时编译器编译后的代码缓存等数据。虽然《Java虚拟机规范》中把方法区描述为堆的一个逻辑部分,但是它却有一个别名叫作“非堆”(Non-Heap),目的是与Java堆区分开来。

    根据《Java虚拟机规范》的规定,如果方法区无法满足新的内存分配需求时,将抛出OutOfMemoryError异常。

  6. 运行时常量池

    运行时常量池(Runtime Constant Pool)是方法区的一部分。Class文件中除了有类的版本、字段、方法、接口等描述信息外,还有一项信息是常量池表(Constant Pool Table),用于存放编译期生成的各种字面量与符号引用,这部分内容将在类加载后存放到方法区的运行时常量池中。

    既然运行时常量池是方法区的一部分,自然受到方法区内存的限制,当常量池无法再申请到内存时会抛出OutOfMemoryError异常。

  7. 直接内存

    直接内存(Direct Memory)并不是虚拟机运行时数据区的一部分,也不是《Java虚拟机规范》中定义的内存区域。但是这部分内存也被频繁地使用,而且也可能导致OutOfMemoryError异常出现。

    显然,本机直接内存的分配不会受到Java堆大小的限制,但是,既然是内存,则肯定还是会受到本机总内存(包括物理内存、SWAP分区或者分页文件)大小以及处理器寻址空间的限制,一般服务器管理员配置虚拟机参数时,会根据实际内存去设置-Xmx等参数信息,但经常忽略掉直接内存,使得各个内存区域总和大于物理内存限制(包括物理的和操作系统级的限制),从而导致动态扩展时出现OutOfMemoryError异常。

程序计数器是什么?

程序计数器记录着下一条JVM指令的执行地址,为了能够准确记录各个线程正在执行的当前字节码指令地址

如果没有了程序计数器的话,那么java程序中的流程控制将无法得到正确的控制,多线程也无法进行正确的轮转

堆、栈、方法区都存放的是什么

堆:新建的实例对象,GC的主要场所

栈:局部变量表、操作数栈帧、方法出口信息

方法区:类信息、常量、静态变量等,

JDK1.7之前运行时常量池包含字符串常量池,存放在方法区中

JDK1.7 字符串常量池拿到了堆里

JDK1.8 方法区从永久代变成了元空间

堆和栈的区别

  • Java栈是与每一个线程关联的,JVM在创建每一个线程的时候,会分配一定的栈空间给线程,主要存放线程执行过程中的局部变量,方法的返回值,基本类型的变量(,int, short, long, byte, float, double, boolean, char)以及方法调用的上下文。栈空间随着线程的终止而释放,栈的优势是,存取速度比堆要快,栈数据可以共享。但缺点是,存在栈中的数据大小与生存期必须是确定的,缺乏灵活性。栈有一个很重要的特殊性,就是存在栈中的数据可以共享。
  • Java中堆是由所有的线程共享的一块内存区域,堆用来保存各种JAVA对象,比如数组,线程对象等,java的堆是一个运行时数据区,类的(对象从中分配空间。这些对象通过new、newarray、anewarray和multianewarray等 指令建立,它们不需要程序代码来显式的释放。堆是由垃圾回收来负责的,堆的优势是可以动态地分配内存大小,生存期也不必事先告诉编译器,因为它是在运行时 动态分配内存的,Java的垃圾收集器会自动收走这些不再使用的数据。但缺点是,由于要在运行时动态分配内存,存取速度较慢。

类加载

一个类型从被加载到虚拟机内存中开始,到卸载出内存为止,它的整个生命周期将会经历加载(Loading)、验证(Verification)、准备(Preparation)、解析(Resolution)、初始化(Initialization)、使用(Using)和卸载(Unloading)七个阶段,其中验证、准备、解析三个部分统称为连接(Linking)。这七个阶段的发生顺序如下图所示。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-vcU4YhQ6-1681540635270)(D:/学习/JAVA/面经/面试题整理版本.assets/jvm-3.jpg)]

在上述七个阶段中,包括了类加载的全过程,即加载、验证、准备、解析和初始化这五个阶段。

一、加载

“加载”(Loading)阶段是整个“类加载”(Class Loading)过程中的一个阶段,在加载阶段,Java虚拟机需要完成以下三件事情:

  1. 通过一个类的全限定名来获取定义此类的二进制字节流。
  2. 将这个字节流所代表的静态存储结构转化为方法区的运行时数据结构。
  3. 在内存中生成一个代表这个类的java.lang.Class对象,作为方法区这个类的各种数据的访问入口。

加载阶段结束后,Java虚拟机外部的二进制字节流就按照虚拟机所设定的格式存储在方法区之中了,方法区中的数据存储格式完全由虚拟机实现自行定义,《Java虚拟机规范》未规定此区域的具体数据结构。类型数据妥善安置在方法区之后,会在Java堆内存中实例化一个java.lang.Class类的对象,这个对象将作为程序访问方法区中的类型数据的外部接口。

二、验证

验证是连接阶段的第一步,这一阶段的目的是确保Class文件的字节流中包含的信息符合《Java虚拟机规范》的全部约束要求,保证这些信息被当作代码运行后不会危害虚拟机自身的安全。验证阶段大致上会完成下面四个阶段的检验动作:文件格式验证、元数据验证、字节码验证和符号引用验证。

  1. 文件格式验证:

    第一阶段要验证字节流是否符合Class文件格式的规范,并且能被当前版本的虚拟机处理。

  2. 元数据验证:

    第二阶段是对字节码描述的信息进行语义分析,以保证其描述的信息符合《Java语言规范》的要求。

  3. 字节码验证:

    第三阶段是通过数据流分析和控制流分析,确定程序语义是合法的、符合逻辑的。

  4. 符号引用验证:

    符号引用验证可以看作是对类自身以外(常量池中的各种符号引用)的各类信息进行匹配性校验,通俗来说就是,该类是否缺少或者被禁止访问它依赖的某些外部类、方法、字段等资源。

三、准备

准备阶段是正式为类中定义的变量(即静态变量,被static修饰的变量)分配内存并设置类变量初始值的阶段。从概念上讲,这些变量所使用的内存都应当在方法区中进行分配,但必须注意到方法区本身是一个逻辑上的区域,在JDK7及之前,HotSpot使用永久代来实现方法区时,实现是完全符合这种逻辑概念的。而在JDK 8及之后,类变量则会随着Class对象一起存放在Java堆中,这时候“类变量在方法区”就完全是一种对逻辑概念的表述了。

四、解析

解析阶段是Java虚拟机将常量池内的符号引用替换为直接引用的过程,符号引用在Class文件中以CONSTANT_Class_info、CONSTANT_Fieldref_info、CONSTANT_Methodref_info等类型的常量出现,那解析阶段中所说的直接引用与符号引用又有什么关联呢?

符号引用(Symbolic References):符号引用以一组符号来描述所引用的目标,符号可以是任何形式的字面量,只要使用时能无歧义地定位到目标即可。符号引用与虚拟机实现的内存布局无关,引用的目标并不一定是已经加载到虚拟机内存当中的内容。各种虚拟机实现的内存布局可以各不相同,但是它们能接受的符号引用必须都是一致的,因为符号引用的字面量形式明确定义在《Java虚拟机规范》的Class文件格式中。

直接引用(Direct References):直接引用是可以直接指向目标的指针、相对偏移量或者是一个能间接定位到目标的句柄。直接引用是和虚拟机实现的内存布局直接相关的,同一个符号引用在不同虚拟机实例上翻译出来的直接引用一般不会相同。如果有了直接引用,那引用的目标必定已经在虚拟机的内存中存在。

五、初始化

类的初始化阶段是类加载过程的最后一个步骤,之前介绍的几个类加载的动作里,除了在加载阶段用户应用程序可以通过自定义类加载器的方式局部参与外,其余动作都完全由Java虚拟机来主导控制。直到初始化阶段,Java虚拟机才真正开始执行类中编写的Java程序代码,将主导权移交给应用程序。

进行准备阶段时,变量已经赋过一次系统要求的初始零值,而在初始化阶段,则会根据程序员通过程序编码制定的主观计划去初始化类变量和其他资源。我们也可以从另外一种更直接的形式来表达:初始化阶段就是执行类构造器<clinit>()方法的过程。<clinit>()并不是程序员在Java代码中直接编写的方法,它是Javac编译器的自动生成物。

JMM主内存和本地内存交互操作

  1. **lock(锁定):**作用于主内存的变量,一个变量在同一时间只能一个线程锁定。该操作表示该线程独占锁定的变量。
  2. **unlock(解锁):**作用于主内存的变量,表示这个变量的状态由处于锁定状态被释放,这样其他线程才能对该变量进行锁定。
  3. **read(读取):**作用于主内存变量,表示把一个主内存变量的值传输到线程的工作内存,以便随后的load操作使用。
  4. **load(载入):**作用于线程的工作内存的变量,表示把read操作从主内存中读取的变量的值放到工作内存的变量副本中(副本是相对于主内存的变量而言的)。
  5. **use(使用):**作用于线程的工作内存中的变量,表示把工作内存中的一个变量的值传递给执行引擎,每当虚拟机遇到一个需要使用变量的值的字节码指令时就会执行该操作。
  6. **assign(赋值):**作用于线程的工作内存的变量,表示把执行引擎返回的结果赋值给工作内存中的变量,每当虚拟机遇到一个给变量赋值的字节码指令时就会执行该操作。
  7. **store(存储):**作用于线程的工作内存中的变量,把工作内存中的一个变量的值传递给主内存,以便随后的write操作使用。
  8. **write(写入):**作用于主内存的变量,把store操作从工作内存中得到的变量的值放入主内存的变量中。

volatile如何保证可见性

当我们共享变量用 volatile 修饰后就会帮我们在总线开启一个 MESI 缓存协议。当其中一个线程将修改后的值传输到总线时,就会触发总线的监控告诉其他正在使用当前共享变量的线程使当前工作内存中的值失效。这个时候就需要去主内存中获取新的值

volatile如何保证有序性

volatile 通过内存屏障实现了防止指令重排的目的。它会告诉 CPU 和编译器先于这个命令的必须先执

行,后于这 个命令的必须后执行内存屏障,并且前面程序的结果对后面是可见的

happen-before了解过吗?

前一个操作的结果对后续操作时可见的

  • 程序顺序规则 :一个线程内,按照代码顺序,书写在前面的操作 happens-before 于书写在后面的操作;
  • 解锁规则 :解锁 happens-before 于加锁;
  • volatile 变量规则 :对一个 volatile 变量的写操作 happens-before 于后面对这个 volatile 变量的读操作。说白了就是对 volatile 变量的写操作的结果对于发生于其后的任何操作都是可见的。
  • 传递规则 :如果 A happens-before B,且 B happens-before C,那么 A happens-before C;
  • 线程启动规则 :Thread 对象的 start()方法 happens-before 于此线程的每一个动作。

如果两个操作不满足上述任意一个 happens-before 规则,那么这两个操作就没有顺序的保障,JVM 可以对这两个操作进行重排序。

内存泄漏和内存溢出的概念

内存泄露:内存泄露是指程序在运行过程中把内存分配给了临时变量,用完之后没有被GC回收,始终占用这内存,即使不能被使用了也不能被分配给其他变了,于是就发生了内存泄露

内存溢出:简单说就是程序在运行过程中申请的内存大于系统能够提供的内存,导致无法申请到足够的内存于是就发生了内存溢出

内存泄露的原因如何解决

内存泄漏的根本原因是长生命周期的对象持有短生命周期对象的引用,尽管短生命周期的对象已经不再需要,但由于长生命周期对象持有它的引用而导致不能被回收

  1. 尽早释放无用对象的引用。
  2. 避免在循环中创建对象。
  3. 使用字符串处理时避免使用String,应使用StringBuffer。
  4. 尽量少使用静态变量,因为静态变量存放在永久代,基本不参与垃圾回收。

什么是内存溢出,怎么解决?

就是指程序运行过程中申请的内存大于系统能够提供的内存,导致无法申请到足够的内存,于是就发生了内存溢出。

引起内存溢出的原因有很多种,常见的有以下几种:

  1. 内存中加载的数据量过于庞大,如一次从数据库取出过多数据;
  2. 集合类中有对对象的引用,使用完后未清空,使得JVM不能回收;
  3. 代码中存在死循环或循环产生过多重复的对象实体;
  4. 使用的第三方软件中的BUG;
  5. 启动参数内存值设定的过小。

内存溢出的解决方案:

  • 第一步,修改JVM启动参数,直接增加内存。
  • 第二步,检查错误日志,查看“OutOfMemory”错误前是否有其它异常或错误。
  • 第三步,对代码进行走查和分析,找出可能发生内存溢出的位置。
  • 第四步,使用内存查看工具动态查看内存使用情况。

如何判断对象已经死亡

可达性分析法:这个算法的基本思想就是通过一系列的称为 “GC Roots” 的对象作为起点,从这些节点开始向下搜索,节点所走过的路径称为引用链,当一个对象到 GC Roots 没有任何引用链相连的话,则证明此对象是不可用的,需要被回收。

对于个字符串来说,没有任何一个对象引用该字符串常量的话,就被认为是无用的

如果是类的话,首先要判断该类的实例是否被全部回收、该类的加载器是否已经被回收,该类对应的class对象是否在任何地方都没有被引用,通过反射机制也无法访问该类

GC Roots:

  • 虚拟机栈(栈帧中的本地变量表)中引用的对象
  • 本地方法栈(Native 方法)中引用的对象
  • 方法区中类静态属性引用的对象
  • 方法区中常量引用的对象
  • 所有被同步锁持有的对象

强引用、软引用、弱引用、虚引用四种(引用强度逐渐减弱)

1.强引用(StrongReference)

以前我们使用的大部分引用实际上都是强引用,这是使用最普遍的引用。如果一个对象具有强引用,那就类似于必不可少的生活用品,垃圾回收器绝不会回收它。当内存空间不足,Java 虚拟机宁愿抛出 OutOfMemoryError 错误,使程序异常终止,也不会靠随意回收具有强引用的对象来解决内存不足问题。

2.软引用(SoftReference)

如果一个对象只具有软引用,那就类似于可有可无的生活用品。如果内存空间足够,垃圾回收器就不会回收它,如果内存空间不足了,就会回收这些对象的内存。只要垃圾回收器没有回收它,该对象就可以被程序使用。软引用可用来实现内存敏感的高速缓存。

软引用可以和一个引用队列(ReferenceQueue)联合使用,如果软引用所引用的对象被垃圾回收,JAVA 虚拟机就会把这个软引用加入到与之关联的引用队列中。

3.弱引用(WeakReference)

如果一个对象只具有弱引用,那就类似于可有可无的生活用品。弱引用与软引用的区别在于:只具有弱引用的对象拥有更短暂的生命周期。在垃圾回收器线程扫描它所管辖的内存区域的过程中,一旦发现了只具有弱引用的对象,不管当前内存空间足够与否,都会回收它的内存。不过,由于垃圾回收器是一个优先级很低的线程, 因此不一定会很快发现那些只具有弱引用的对象。

弱引用可以和一个引用队列(ReferenceQueue)联合使用,如果弱引用所引用的对象被垃圾回收,Java 虚拟机就会把这个弱引用加入到与之关联的引用队列中。

4.虚引用(PhantomReference)

"虚引用"顾名思义,就是形同虚设,与其他几种引用都不同,虚引用并不会决定对象的生命周期。如果一个对象仅持有虚引用,那么它就和没有任何引用一样,在任何时候都可能被垃圾回收。

虚引用主要用来跟踪对象被垃圾回收的活动

虚引用与软引用和弱引用的一个区别在于: 虚引用必须和引用队列(ReferenceQueue)联合使用。当垃圾回收器准备回收一个对象时,如果发现它还有虚引用,就会在回收对象的内存之前,把这个虚引用加入到与之关联的引用队列中。程序可以通过判断引用队列中是否已经加入了虚引用,来了解被引用的对象是否将要被垃圾回收。程序如果发现某个虚引用已经被加入到引用队列,那么就可以在所引用的对象的内存被回收之前采取必要的行动。

特别注意,在程序设计中一般很少使用弱引用与虚引用,使用软引用的情况较多,这是因为软引用可以加速 JVM 对垃圾内存的回收速度,可以维护系统的运行安全,防止内存溢出(OutOfMemory)等问题的产生

有哪些垃圾回收算法

(1)标记清除算法

该算法分为“标记”和“清除”阶段:首先标记出所有不需要回收的对象,在标记完成后统一回收掉所有没有被标记的对象。它是最基础的收集算法,后续的算法都是对其不足进行改进得到。这种垃圾收集算法会带来两个明显的问题:

  1. 效率问题
  2. 空间问题(标记清除后会产生大量不连续的碎片)

(2) 标记整理算法

根据老年代的特点提出的一种标记算法,标记过程仍然与“标记-清除”算法一样,但后续步骤不是直接对可回收对象回收,而是让所有存活的对象向一端移动,然后直接清理掉端边界以外的内存。

优点:没有内存碎片

缺点:整理牵扯到对象移动,速度较慢缺点:

(3) 复制算法(幸存区适合使用,分了两个部分去交换)

为了解决效率问题,“标记-复制”收集算法出现了。它可以将内存分为大小相同的两块,每次使用其中的一块。当这一块的内存使用完后,就将还存活的对象复制到另一块去,然后再把使用的空间一次清理掉。这样就使每次的内存回收都是对内存区间的一半进行回收。

分代收集算法

一般将 java 堆分为新生代和老年代,这样我们就可以根据各个年代的特点选择合适的垃圾收集算法。

比如在新生代中,每次收集都会有大量对象死去,所以可以选择”标记-复制“算法,只需要付出少量对象的复制成本就可以完成每次垃圾收集。而老年代的对象存活几率是比较高的,而且没有额外的空间对它进行分配担保,所以我们必须选择“标记-清除”或“标记-整理”算法进行垃圾收集。

(1) 对象首先分配在伊甸园(Eden)区域

(2) 新生代空间不足时,触发 minor gc(新生代的垃圾回收),伊甸园和幸存区from 中存活的对象使用

copy 复制到幸存区 to 中,存活的对象年龄加 1 并且交换 from 和 to 的位置;

minor gc 会引发 stop the world(STW),暂停其它用户的线程,等垃圾回收结束,用户线程才恢复运行

(3) 当幸存区对象寿命超过阈值时,会晋升至老年代,最大寿命是 15(4bit)

(4)当老年代空间不足,会先尝试触发 minor gc,如果之后空间仍不足,那么触发 full gc,STW 的时间更长

当对象很大,新生代的空间不够存储,但是老年代的空间够存储时,会直接晋升老年代,不会引起新生

代 gc

垃圾回收器

Serial 收集器

Serial(串行)收集器是最基本、历史最悠久的垃圾收集器了。大家看名字就知道这个收集器是一个单线程收集器了。它的 “单线程” 的意义不仅仅意味着它只会使用一条垃圾收集线程去完成垃圾收集工作,更重要的是它在进行垃圾收集工作的时候必须暂停其他所有的工作线程( “Stop The World” ),直到它收集结束。

新生代采用标记-复制算法,老年代采用标记-整理算法。

ParNew 收集器

ParNew 收集器其实就是 Serial 收集器的多线程版本,除了使用多线程进行垃圾收集外,其余行为(控制参数、收集算法、回收策略等等)和 Serial 收集器完全一样。

新生代采用标记-复制算法,老年代采用标记-整理算法

  • 并行(Parallel) :指多条垃圾收集线程并行工作,但此时用户线程仍然处于等待状态。
  • 并发(Concurrent):指用户线程与垃圾收集线程同时执行(但不一定是并行,可能会交替执行),用户程序在继续运行,而垃圾收集器运行在另一个 CPU 上。

Parallel Scavenge 收集器

Parallel Scavenge 收集器也是使用标记-复制算法的多线程收集器,它看上去几乎和 ParNew 都一样。 那么它有什么特别之处呢?

Parallel Scavenge 收集器关注点是吞吐量(高效率的利用 CPU)。CMS 等垃圾收集器的关注点更多的是用户线程的停顿时间(提高用户体验)。所谓吞吐量就是 CPU 中用于运行用户代码的时间与 CPU 总消耗时间的比值。 Parallel Scavenge 收集器提供了很多参数供用户找到最合适的停顿时间或最大吞吐量,如果对于收集器运作不太了解,手工优化存在困难的时候,使用 Parallel Scavenge 收集器配合自适应调节策略,把内存管理优化交给虚拟机去完成也是一个不错的选择。

新生代采用标记-复制算法,老年代采用标记-整理算法。

这是 JDK1.8 默认收集器

Serial Old 收集器

Serial 收集器的老年代版本,它同样是一个单线程收集器。它主要有两大用途:一种用途是在 JDK1.5 以及以前的版本中与 Parallel Scavenge 收集器搭配使用,另一种用途是作为 CMS 收集器的后备方案。

Parallel Old 收集器

Parallel Scavenge 收集器的老年代版本。使用多线程和“标记-整理”算法。在注重吞吐量以及 CPU 资源的场合,都可以优先考虑 Parallel Scavenge 收集器和 Parallel Old 收集器。

CMS 收集器

CMS(Concurrent Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器。它非常符合在注重用户体验的应用上使用。

CMS(Concurrent Mark Sweep)收集器是 HotSpot 虚拟机第一款真正意义上的并发收集器,它第一次实现了让垃圾收集线程与用户线程(基本上)同时工作。

从名字中的Mark Sweep这两个词可以看出,CMS 收集器是一种 “标记-清除”算法实现的,它的运作过程相比于前面几种垃圾收集器来说更加复杂一些。整个过程分为四个步骤:

  • 初始标记: 暂停所有的其他线程,并记录下直接与 root 相连的对象,速度很快
  • 并发标记: 同时开启 GC 和用户线程,用一个闭包结构去记录可达对象。但在这个阶段结束,这个闭包结构并不能保证包含当前所有的可达对象。因为用户线程可能会不断的更新引用域,所以 GC 线程无法保证可达性分析的实时性。所以这个算法里会跟踪记录这些发生引用更新的地方。
  • 重新标记: 重新标记阶段就是为了修正并发标记期间因为用户程序继续运行而导致标记产生变动的那一部分对象的标记记录,这个阶段的停顿时间一般会比初始标记阶段的时间稍长,远远比并发标记阶段时间短
  • 并发清除: 开启用户线程,同时 GC 线程开始对未标记的区域做清扫。

CMS收集器还远达不到完美的程度,它至少有以下三个明显的缺点:

首先,CMS收集器对处理器资源非常敏感。在并发阶段,它虽然不会导致用户线程停顿,但却会因为占用了一部分线程(或者说处理器的计算能力)而导致应用程序变慢,降低总吞吐量

然后,由于CMS收集器无法处理“浮动垃圾”(Floating Garbage),有可能出现“Con-current Mode Failure”失败进而导致另一次完全“Stop TheWorld”的Full GC的产生。

还有最后一个缺点,CMS是一款基于“标记-清除”算法实现的收集器,这意味着收集结束时会有大量空间碎片产生。空间碎片过多时,将会给大对象分配带来很大麻烦,往往会出现老年代还有很多剩余空间,但就是无法找到足够大的连续空间来分配当前对象,而不得不提前触发一次Full GC的情况。

G1 收集器

G1 (Garbage-First) 是一款面向服务器的垃圾收集器,主要针对配备多颗处理器及大容量内存的机器. 以极高概率满足 GC 停顿时间要求的同时,还具备高吞吐量性能特征.

被视为 JDK1.7 中 HotSpot 虚拟机的一个重要进化特征。它具备以下特点:

  • 并行与并发:G1 能充分利用 CPU、多核环境下的硬件优势,使用多个 CPU(CPU 或者 CPU 核心)来缩短 Stop-The-World 停顿时间。部分其他收集器原本需要停顿 Java 线程执行的 GC 动作,G1 收集器仍然可以通过并发的方式让 java 程序继续执行。
  • 分代收集:虽然 G1 可以不需要其他收集器配合就能独立管理整个 GC 堆,但是还是保留了分代的概念。
  • 空间整合:与 CMS 的“标记-清理”算法不同,G1 从整体来看是基于“标记-整理”算法实现的收集器;从局部上来看是基于“标记-复制”算法实现的。
  • 可预测的停顿:这是 G1 相对于 CMS 的另一个大优势,降低停顿时间是 G1 和 CMS 共同的关注点,但 G1 除了追求低停顿外,还能建立可预测的停顿时间模型,能让使用者明确指定在一个长度为 M 毫秒的时间片段内。

G1 收集器的运作大致分为以下几个步骤:

  • 初始标记
  • 并发标记
  • 最终标记
  • 筛选回收

G1 收集器在后台维护了一个优先列表,每次根据允许的收集时间,优先选择回收价值最大的 Region(这也就是它的名字 Garbage-First 的由来) 。这种使用 Region 划分内存空间以及有优先级的区域回收方式,保证了 G1 收集器在有限时间内可以尽可能高的收集效率(把内存化整为零)。

虽然G1也仍是遵循分代收集理论设计的,但其堆内存的布局与其他收集器有非常明显的差异:G1不再坚持固定大小以及固定数量的分代区域划分,而是把连续的Java堆划分为多个大小相等的独立区域(Region),每一个Region都可以根据需要,扮演新生代的Eden空间、Survivor空间,或者老年代空间。收集器能够对扮演不同角色的Region采用不同的策略去处理,这样无论是新创建的对象还是已经存活了一段时间、熬过多次收集的旧对象都能获取很好的收集效果。

CMS的回收过程

CMS(Concurrent Mark Sweep,并发标记清除) 收集器是以获取最短回收停顿时间为目标的收集器(追求低停顿),它在垃圾收集时使得用户线程和 GC 线程并发执行,因此在垃圾收集过程中用户也不会感到明显的卡顿

初始标记、并发标记、重新标记和并发清除

初始标记:从GC Root开始进行标记,这个过程会有短暂的停顿,但是跟GCroot直接关联的对象不会有很多所以速度会很快

并发标记:根据上一步的标识结果会继续标记其他的关联对象,这个过程不会阻塞其他线程

重新标记:因为上一步没有阻塞其他线程可能会产生新的垃圾

并发清除:清除标记已经死亡的对象,这个过程也是和其他线程一起进行的

3次GC

并发预清理

可中止的并发预清理

并发清理

介绍一下老年代

新生代:是用来存放新生的对象。一般占据堆的1/3 空间。由于频繁创建对象,所以新生代会频繁触发MinorGC 进行垃圾 回收。新生代又分为Eden 区、ServivorFrom、 ServivorTo 3个区。

**老年代:**主要存放应用程序中生命周期长的内存对象。

老年代的对象比较稳定,所以MajorGC不会频繁执行。在进行MajorGC 前一般都先进行了一次MinorGC,使得有新生代的对象晋身入老年代,导致空间不够用时才触发。

当无法找到足够大的连续空间分配给新创建的较大对象时也会提前触发一次MajorGC进行垃圾回收腾出空间。

MajorGC采用标记清除算法:首先扫描一次所有老年代,标记出存活的对象,然后回收没有标记的对象。MajorGC的耗时比较长,因为要扫描再回收。MajorGC 会产生内存碎片,为了减少内存损耗,我们一般需要进行合并或者标记出来方便下次直接分配。当老年代也满了装不下的时候,就会抛出OOM (Out of Memory)异常。

永久代:

指内存的永久保存区域,主要存放Class 和Meta (元数据)的信息,Class在被加载的时候被放入永久区域,它和和存放实例的区域不同**,GC不会在主程序运行期对永久区域进行清理**。所以这也导致了永久代的区域会随着加载的Class 的增多而胀满,最终抛出OOM异常。

JAVA8与元数据 :

在Java8 中,永久代已经被移除,被一个称为“元数据区”(元空间)的区域所取代。

元空间的本质和永久代类似,元空间与永久代之间最大的区别在于:元空间并不在虚拟机中,而是使用本地内存。因此,默认情况下,元空间的大小仅受本地内存限制。

类的元数据放入native memory,字符串池和类的静态变量放入java 堆中,这样可以加载多少类的元数据就不再由MaxPermSize控制,而由系统的实际可用空间来控制。

CyclicBarrier

它允许一组线程互相等待,直到所有线程达到某个公共屏障点时,屏障才会打开,然后线程才能继续往下执行.举个简单的例子就是:旅游团带着一帮人参观景点,规定在下一个景点A处集合,于是导游就在景点A等着大家,导游就是这个集合点或者说屏障,直到所有的游客集合完毕,导游才会带着大家继续参观下一个景点B.

CyclicBarrier有两个构造函数:

  • CyclicBarrier(int parties); int类型的参数表示有几个线程来参与这个屏障拦截,(拿上面的例子,即有几个人跟团旅游);
  • CyclicBarrier(int parties,Runnable barrierAction);当所有线程到达一个屏障点时,优先执行barrierAction这个线程.

最重要的一个方法:

类的静态变量放入java 堆**中,这样可以加载多少类的元数据就不再由MaxPermSize控制,而由系统的实际可用空间来控制。

CyclicBarrier

它允许一组线程互相等待,直到所有线程达到某个公共屏障点时,屏障才会打开,然后线程才能继续往下执行.举个简单的例子就是:旅游团带着一帮人参观景点,规定在下一个景点A处集合,于是导游就在景点A等着大家,导游就是这个集合点或者说屏障,直到所有的游客集合完毕,导游才会带着大家继续参观下一个景点B.

CyclicBarrier有两个构造函数:

  • CyclicBarrier(int parties); int类型的参数表示有几个线程来参与这个屏障拦截,(拿上面的例子,即有几个人跟团旅游);
  • CyclicBarrier(int parties,Runnable barrierAction);当所有线程到达一个屏障点时,优先执行barrierAction这个线程.

最重要的一个方法:

await();每个线程调用await(),表示我已经到达屏障点,然后当前线程被阻塞,(拿上面的例子讲就是游客A表示到达了景点A,然后他就在那儿等着大家到齐).