数论高斯记号作业
求满足 [x2]+[x+13]+[x+25]=x[\\frac{x}{2}]+[\\frac{x+1}{3}]+[\\frac{x+2}{5}]=x[2x]+[3x+1]+[5x+2]=x的所有 xxx 值之和。
∵\\because∵ gcd(2,3,5)=30
∴x=30k+r,k∈Z,−15≤r≤14\\therefore x=30k+r,\\ k \\in \\mathbb{Z},\\ -15 \\leq r \\leq 14∴x=30k+r, k∈Z, −15≤r≤14
带入原方程
[x2]+[x+13]+[x+25]=[30k+r2]+[30k+r+13]+[30k+r+25]=[30k2+r2]+[30k3+r+13]+[30k5+r+25]=[15k+r2]+[10k+r+13]+[6k+r+25]=15k+[r2]+10k+[r+13]+6k+[r+25]=31k+[r2]+[r+13]+[r+25]=30k+r[\\frac{x}{2}]+[\\frac{x+1}{3}]+[\\frac{x+2}{5}]\\\\ =[\\frac{30k+r}{2}]+[\\frac{30k+r+1}{3}]+[\\frac{30k+r+2}{5}]\\\\ =[\\frac{30k}{2}+\\frac{r}{2}]+[\\frac{30k}{3}+\\frac{r+1}{3}]+[\\frac{30k}{5}+\\frac{r+2}{5}]\\\\ =[15k+\\frac{r}{2}]+[10k+\\frac{r+1}{3}]+[6k+\\frac{r+2}{5}]\\\\ =15k+[\\frac{r}{2}]+10k+[\\frac{r+1}{3}]+6k+[\\frac{r+2}{5}]\\\\ =31k+[\\frac{r}{2}]+[\\frac{r+1}{3}]+[\\frac{r+2}{5}]\\\\ =30k+r[2x]+[3x+1]+[5x+2]=[230k+r]+[330k+r+1]+[530k+r+2]=[230k+2r]+[330k+3r+1]+[530k+5r+2]=[15k+2r]+[10k+3r+1]+[6k+5r+2]=15k+[2r]+10k+[3r+1]+6k+[5r+2]=31k+[2r]+[3r+1]+[5r+2]=30k+r
∴[r2]+[r+13]+[r+25]=r−k\\therefore [\\frac{r}{2}]+[\\frac{r+1}{3}]+[\\frac{r+2}{5}]=r-k∴[2r]+[3r+1]+[5r+2]=r−k
∴r2+r+13+r+25−3<r−k≤r2+r+13+r+25\\therefore \\frac{r}{2}+\\frac{r+1}{3}+\\frac{r+2}{5}-3<r-k \\leq \\frac{r}{2}+\\frac{r+1}{3}+\\frac{r+2}{5}∴2r+3r+1+5r+2−3<r−k≤2r+3r+1+5r+2
∴r2+r+13+r+25−r−3<−k≤r2+r+13+r+25−r\\therefore \\frac{r}{2}+\\frac{r+1}{3}+\\frac{r+2}{5}-r-3<-k \\leq \\frac{r}{2}+\\frac{r+1}{3}+\\frac{r+2}{5}-r∴2r+3r+1+5r+2−r−3<−k≤2r+3r+1+5r+2−r
∴15r+10r+10+6r+12−30r30−3<−k≤15r+10r+10+6r+12−30r30\\therefore \\frac{15r+10r+10+6r+12-30r}{30}-3<-k \\leq \\frac{15r+10r+10+6r+12-30r}{30}∴3015r+10r+10+6r+12−30r−3<−k≤3015r+10r+10+6r+12−30r
∴r−6830<−k≤r+2230\\therefore \\frac{r-68}{30}<-k \\leq \\frac{r+22}{30}∴30r−68<−k≤30r+22
∴68−r30>k≥−r−2230,−15≤r≤14\\therefore \\frac{68-r}{30}>k \\ge \\frac{-r-22}{30},\\ -15\\leq r \\leq 14∴3068−r>k≥30−r−22, −15≤r≤14
∴68−r>30×k≥−r−22,−15≤r≤14\\therefore 68-r>30\\times k \\ge -r-22,\\ -15\\leq r \\leq 14∴68−r>30×k≥−r−22, −15≤r≤14
∴68−r>30×k≥−r−22,15≥−r≥−14\\therefore 68-r>30\\times k \\ge -r-22,\\ 15\\ge -r \\ge -14∴68−r>30×k≥−r−22, 15≥−r≥−14
∴68−15>30×k≥−14−22\\therefore 68-15>30\\times k \\ge -14-22∴68−15>30×k≥−14−22
∴53>30×k≥−36\\therefore 53>30\\times k \\ge -36∴53>30×k≥−36
∴1.8>k≥−1.2\\therefore 1.8>k \\ge -1.2∴1.8>k≥−1.2
∴k=1,0,−1\\therefore k=1,0,-1∴k=1,0,−1
-
当 k=−1k=-1k=−1 时候,∴68−r>−30≥−r−22\\therefore 68-r>-30 \\ge -r-22∴68−r>−30≥−r−22
68−r>−30→−r>−98→r<9868-r>-30 \\rightarrow -r>-98 \\rightarrow r<9868−r>−30→−r>−98→r<98
−30≥−r−22→−8≥−r→8≤r-30 \\ge -r-22 \\rightarrow -8 \\ge -r \\rightarrow 8 \\leq r−30≥−r−22→−8≥−r→8≤r
∴8≤r<98\\therefore 8 \\leq r < 98∴8≤r<98
∴8≤r≤14\\therefore 8 \\leq r \\leq 14∴8≤r≤14
验算 [r2]+[r+13]+[r+25]=r−k[\\frac{r}{2}]+[\\frac{r+1}{3}]+[\\frac{r+2}{5}]=r-k[2r]+[3r+1]+[5r+2]=r−k 得 r=8,14r=8,14r=8,14 有解。所以 x=30k+r=−30+r=−22,−16x=30k+r=-30+r=-22,-16x=30k+r=−30+r=−22,−16。 -
当 k=0k=0k=0 时候,
∴68−r>0≥−r−22\\therefore 68-r>0 \\ge -r-22∴68−r>0≥−r−22
∴−15≤r≤14\\therefore -15 \\leq r \\leq 14∴−15≤r≤14
验算得有解 x=−12,−10,−7,−6,−4,−2,−1,2,3,4,5,6,9,10,11,12,13x=-12,-10,-7,-6,-4,-2,-1,2,3,4,5,6,9,10,11,12,13x=−12,−10,−7,−6,−4,−2,−1,2,3,4,5,6,9,10,11,12,13。 -
当 k=1k=1k=1 时候,
∴68−r>30≥−r−22\\therefore 68-r>30 \\ge -r-22∴68−r>30≥−r−22
∴−15≤r≤14\\therefore -15 \\leq r \\leq 14∴−15≤r≤14
验算得有解 x=15,16,17,19,21,22,25,27,31,37x=15,16,17,19,21,22,25,27,31,37x=15,16,17,19,21,22,25,27,31,37。
全部得 x=−22,−16,−10,−7,−6,−4,−2,−1,2,3,4,5,6,9,10,11,12,13,15,16,17,19,21,22,2527,31,37x=-22,-16,-10,-7,-6,-4,-2,-1,2,3,4,5,6,9,10,11,12,13,15,16,17,19,21,22,2527,31,37x=−22,−16,−10,−7,−6,−4,−2,−1,2,3,4,5,6,9,10,11,12,13,15,16,17,19,21,22,2527,31,37
∑x=225\\sum x=225∑x=225
已知 0<a<10<a<10<a<1,且满足 [a+130]+[a+230]+...+[a+2930]=18[a+\\frac{1}{30}]+[a+\\frac{2}{30}]+...+[a+\\frac{29}{30}]=18[a+301]+[a+302]+...+[a+3029]=18,求 [10a][10a][10a] 的值。
∵0<a<1\\because 0<a<1∵0<a<1
∴0+130<a+130<1+130\\therefore 0+\\frac{1}{30}<a+\\frac{1}{30}<1+\\frac{1}{30}∴0+301<a+301<1+301
∴0<a+130<2\\therefore 0<a+\\frac{1}{30}<2∴0<a+301<2
∴0<a+130<a+230<...<a+2930<2\\therefore 0<a+\\frac{1}{30}<a+\\frac{2}{30}<...<a+\\frac{29}{30}<2∴0<a+301<a+302<...<a+3029<2
∴0<[a+130]<2,0<[a+230]<2,...,0<[a+2930]<2\\therefore 0<[a+\\frac{1}{30}]<2,\\\\ 0<[a+\\frac{2}{30}]<2,\\\\ ...,\\\\ 0<[a+\\frac{29}{30}]<2∴0<[a+301]<2,0<[a+302]<2,...,0<[a+3029]<2
即 [a+x30],x∈[1,29][a+\\frac{x}{30}], \\ x \\in [1,29][a+30x], x∈[1,29] 一定是 0 或者 1.
根据题意,其中 181818 个等于 111。
∴[a+130]=[a+230]=...=[a+1130]=0[a+1230]=[a+1330]=...=[a+2930]=1\\therefore [a+\\frac{1}{30}]=[a+\\frac{2}{30}]=...=[a+\\frac{11}{30}]=0\\\\ [a+\\frac{12}{30}]=[a+\\frac{13}{30}]=...=[a+\\frac{29}{30}]=1∴[a+301]=[a+302]=...=[a+3011]=0[a+3012]=[a+3013]=...=[a+3029]=1
∴0<a+1130<1,1≤a+1230<2\\therefore 0 < a+\\frac{11}{30}<1, 1\\leq a+\\frac{12}{30}<2∴0<a+3011<1,1≤a+3012<2
∴18≤30a<19\\therefore 18 \\leq 30a < 19∴18≤30a<19
∴6≤10a<193\\therefore 6 \\leq 10a < \\frac{19}{3}∴6≤10a<319
∴[10a]=6\\therefore [10a] =6∴[10a]=6
设 rrr 满足 [r+19100]+[r+20100]+[r+21100]...+[r+91100]=546[r+\\frac{19}{100}]+[r+\\frac{20}{100}]+[r+\\frac{21}{100}]...+[r+\\frac{91}{100}]=546[r+10019]+[r+10020]+[r+10021]...+[r+10091]=546,求 [100r][100r][100r] 的值
解:
[r+19100]+[r+20100]+[r+21100]...+[r+91100]=[[r]+{r}+19100]+[[r]+{r}+20100]+[[r]+{r}+21100]+...+[[r]+{r}+91100]=[r]+[{r}+19100]+[r]+[{r}+20100]+[r]+[{r}+21100]+...+[r]+[{r}+91100]=73[r]+[{r}+19100]+[{r}+20100]+[{r}+21100]+...+[{r}+91100]=546[r+\\frac{19}{100}]+[r+\\frac{20}{100}]+[r+\\frac{21}{100}]...+[r+\\frac{91}{100}]\\\\ =[[r]+\\{r\\}+\\frac{19}{100}]+[[r]+\\{r\\}+\\frac{20}{100}]+[[r]+\\{r\\}+\\frac{21}{100}]+...+[[r]+\\{r\\}+\\frac{91}{100}]\\\\ =[r]+[\\{r\\}+\\frac{19}{100}]+[r]+[\\{r\\}+\\frac{20}{100}]+[r]+[\\{r\\}+\\frac{21}{100}]+...+[r]+[\\{r\\}+\\frac{91}{100}]\\\\ =73[r]+[\\{r\\}+\\frac{19}{100}]+[\\{r\\}+\\frac{20}{100}]+[\\{r\\}+\\frac{21}{100}]+...+[\\{r\\}+\\frac{91}{100}]=546[r+10019]+[r+10020]+[r+10021]...+[r+10091]=[[r]+{r}+10019]+[[r]+{r}+10020]+[[r]+{r}+10021]+...+[[r]+{r}+10091]=[r]+[{r}+10019]+[r]+[{r}+10020]+[r]+[{r}+10021]+...+[r]+[{r}+10091]=73[r]+[{r}+10019]+[{r}+10020]+[{r}+10021]+...+[{r}+10091]=546
∵546=73×7+35\\because 546=73 \\times 7+35∵546=73×7+35
∴[r]=7\\therefore [r]=7∴[r]=7
∴[{r}+19100]+[{r}+20100]+[{r}+21100]+...+[{r}+91100]=35\\therefore [\\{r\\}+\\frac{19}{100}]+[\\{r\\}+\\frac{20}{100}]+[\\{r\\}+\\frac{21}{100}]+...+[\\{r\\}+\\frac{91}{100}]=35∴[{r}+10019]+[{r}+10020]+[{r}+10021]+...+[{r}+10091]=35
∵19100≤{r}+19100<2,20100≤{r}+20100<2,...,91100≤{r}+91100<2\\because \\frac{19}{100} \\leq \\{r\\}+\\frac{19}{100}<2, \\frac{20}{100} \\leq \\{r\\}+\\frac{20}{100}<2,...,\\frac{91}{100} \\leq \\{r\\}+\\frac{91}{100}<2∵10019≤{r}+10019<2,10020≤{r}+10020<2,...,10091≤{r}+10091<2
∴[{r}+19100]\\therefore [\\{r\\}+\\frac{19}{100}]∴[{r}+10019] 是 000 或者 111
∵\\because∵ 数列是严格单调递增
∴\\therefore∴ 有前 73−35=3873-35=3873−35=38 项为 000,后 353535 项为 111。
∴43100≤{r}<44100\\therefore \\frac{43}{100} \\leq \\{r\\} <\\frac{44}{100}∴10043≤{r}<10044
∴43≤100{r}<100\\therefore 43 \\leq 100\\{r\\} <100∴43≤100{r}<100
∴[100×{r}]=43\\therefore [100 \\times \\{r\\}]=43∴[100×{r}]=43
∴[100r]=[100×([r]+{r})]=[100×(7+{r})]=700+43=743\\therefore [100r]=[100\\times([r]+\\{r\\})]=[100\\times(7+\\{r\\})]=700+43=743∴[100r]=[100×([r]+{r})]=[100×(7+{r})]=700+43=743