【LeetCode72】编辑距离
题目描述
给你两个单词 word1 和 word2, 请返回将 word1 转换成 word2 所使用的最少操作数 。
你可以对一个单词进行如下三种操作:
插入一个字符
删除一个字符
替换一个字符
示例 1:
输入:word1 = “horse”, word2 = “ros”
输出:3
解释:
horse -> rorse (将 ‘h’ 替换为 ‘r’)
rorse -> rose (删除 ‘r’)
rose -> ros (删除 ‘e’)
示例 2:
输入:word1 = “intention”, word2 = “execution”
输出:5
解释:
intention -> inention (删除 ‘t’)
inention -> enention (将 ‘i’ 替换为 ‘e’)
enention -> exention (将 ‘n’ 替换为 ‘x’)
exention -> exection (将 ‘n’ 替换为 ‘c’)
exection -> execution (插入 ‘u’)
提示:
0 <= word1.length, word2.length <= 500
word1 和 word2 由小写英文字母组成
来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/edit-distance
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
解题思路
方法一:递归
// 暴力递归
class Solution {
public:int minDistance(string word1, string word2) {s1 = word1;s2 = word2;int m = word1.size();int n = word2.size();return dp(m - 1, n - 1);}
private:string s1;string s2;int dp(int i, int j){// base case:递归结束条件// i走完s1或者j走完S2时,直接返回另一个字符串剩下的长度if (i == -1) { return j + 1;}if (j == -1) {return i + 1;}if(s1[i] == s2[j]) {return dp(i - 1, j - 1); // do nothing} else {return minVal(dp(i, j - 1) + 1, // 插入dp(i - 1, j) + 1, // 删除dp(i - 1, j - 1) + 1); // 替换}}int minVal(int a, int b, int c) {return min(min(a, b), c);}
};
方法二:备忘录+递归
// 递归+备忘录
class Solution {
public:int minDistance(string word1, string word2) {s1 = word1;s2 = word2;int m = word1.size();int n = word2.size();memo = vector<vector<int>> (m, vector<int>(n, -1));return dp(m - 1, n - 1);}
private:string s1;string s2;vector<vector<int>> memo;int dp(int i, int j){// base case:递归结束条件// i走完s1或者j走完S2时,直接返回另一个字符串剩下的长度if (i == -1) { return j + 1;}if (j == -1) {return i + 1;}if (memo[i][j] != -1) {return memo[i][j];}if(s1[i] == s2[j]) {memo[i][j] = dp(i - 1, j - 1); // do nothing} else {memo[i][j] = minVal(dp(i, j - 1) + 1, // 插入dp(i - 1, j) + 1, // 删除dp(i - 1, j - 1) + 1); // 替换}return memo[i][j];}int minVal(int a, int b, int c) {return min(min(a, b), c);}};
方法三:动态规划
// 动态规划
class Solution {
public:int minDistance(string word1, string word2) {int m = word1.size();int n = word2.size();vector<vector<int>> dp(m + 1, vector<int>(n + 1, 0));// base casefor (int i = 0; i <= m; i++) {dp[i][0] = i;}for (int j = 0; j <= n; j++) {dp[0][j] = j;}for (int i = 1; i <= m; i++) {for (int j = 1; j <= n; j++) {if (word1[i - 1] == word2[j - 1]) {dp[i][j] = dp[i - 1][j - 1]; // do nothing} else {dp[i][j] = minVal(dp[i][j - 1] + 1, // 插入dp[i - 1][j] + 1, // 删除dp[i - 1][j - 1] + 1); // 替换}}}return dp[m][n];}int minVal(int a, int b, int c) {return min(min(a, b), c);}
};